

Jean Goubault-Larrecq

Noetherian spaces, wqos, and their statures

BRAVAS
ENS Paris-Saclay, 11 avril 2022

With Bastien Laboureix, Aliaume Lopez, Simon Halfon

Outline

* Wqos, WSTS... your five minutes of comfort
* Extending classical theorems from wqos to Noetherian spaces
- Sobrifications of Noetherian spaces, and their representations
- Statures of Noetherian spaces and maximal order types of wqos

Wqos and WSTS

Well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering \leq :
(1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence
(3) \leq is well-founded and has no infinite antichain.
(4) Every upwards-closed subset
 is the upwards-closure $\uparrow\left\{x_{1}, \cdots, x_{n}\right\}$ of a finite set
(5) Every monotonic chain $U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots$ of upwards-closed subsets is stationary
(i.e., all the sets U_{n} are equal from some rank on)

Defn. Such a quasi-ordering \leq is called a well-quasi-order (wqo).

Examples

* \mathbb{N}, with its usual ordering - More generally, any total well-founded order
* Every finite set, with any quasi-ordering
*Finite disjoint sums, finite products of wqos are wqo
*Images of wqos by monotonic maps are wqo (in particular quotients)
* Inverse images of wqos by order-reflecting maps are wqo (in particular subsets)
Higman's Lemma. Let $X^{}=\{$ finite words over alphabet X \} ordered by word embedding \leq_{*}. Then X wqo $\Leftrightarrow X^{*}$ wqo
*Kruskal's Theorem. Let $\mathscr{T}(X)=$ \{finite trees with X-labeled vertices $\}$ ordered by homeomorphic tree embedding \leq_{T}. Then X wqo $\Leftrightarrow \mathscr{T}(X)$ wqo.
* And so on.

Well-structured transition systems

*A very interesting class of (infinite) transition systems where coverability (a special form of reachability) is decidable
*Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity:

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

Coverability is decidable

* Effective WSTSs:
- points are representable
$-\leq$ is decidable
$-y \mapsto\left\{x_{1}, \cdots, x_{n}\right\}=\operatorname{Pre}(\uparrow y)$ is computable (so one can compute $\operatorname{Pre}(U)$)
Theorem. (Abdulla et al. 2000, Finkel\&Schnoebelen 2001.) Coverability is decidable on effective WSTSs.

```
fun pre* U =
    let V = pre U
    in
        if v\subseteqU
            then U
        else pre* (U U V)
    end;
fun coverability (S, B) =
    s in pre* (B);
```


Beyond wqos: Noetherian spaces

Going topological

* Every quasi-ordered set (X, \leq) gives rise to a topological space, whose open sets are the upwards-closed sets (the Alexandroff topology)
* Definition. A topological space is Noetherian iff every monotonic chain $U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots$ of open subsets is stationary.
* Proposition. (X, \leq) is wqo
iff X is Noetherian
in its Alexandroff topology.
* Hence Noetherian spaces generalize wqos

Is the generalization proper?

* Yes. Consider $\mathbb{N}_{\text {cof }}$, the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \mathbb{N})
* It may be easier to see that $\mathbb{N}_{\text {cof }}$ is Noetherian by realizing that:
X is Noetherian iff:
(5) Every monotonic chain $U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq$ of open subsets is stationary
- Proposition. A space X is Noetherian iff
every antitonic chain $F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots$ of closed subsets is stationary.
(Take complements.)
* $\mathbb{N}_{\text {cof }}$ does not arise from a wqo, because its specialization ordering is =, which is never wqo on an infinite set

Properties T and W

* Let (X, \leq) be a quasi-ordered set. Its finitary subsets are $\downarrow\left\{x_{1}, \cdots, x_{n}\right\}$
* The finitary subsets generate the upper topology
 It, too, has \leq as specialization quasi-ordering
* Proposition. If:
$-X$ is well-founded

The upper topology is the coarsest topology
with \leq as specialization The Alexandroff topology is the finest.

- (Property T) X is finitary
- (Property W) For all $x, y \in X, \downarrow x \cap \downarrow y$ is finitary then X is Noetherian in the upper topology and the closed sets are the finitary subsets.

This turns out to be the general form of all sober Noetherian spaces.

Well-founded trees

* Every well-founded tree (even not finitely branching)
is Noetherian in the upper topology
- (Property T) $X=\downarrow\left\{r_{0}\right\}$
* (Property W) $\downarrow x \cap \downarrow y$ is empty or equal to $\downarrow x$ or $\downarrow y$
* Not wqo unless tree is finitely branching (infinite antichains)

Proposition. If:
$-X$ is well-founded

- (Property T) X is finitary
- (Property W) For all $x, y \in X, \downarrow x \cap \downarrow y$ is finitary
then X is Noetherian in the upper topology
* Closed sets $=$ finite disjoint unions of subtrees

The Hoare hyperspace of a Noetherian space

* Every well-founded inf-semilattice is Noetherian in the upper topology
* Let $\mathscr{H} X=\{$ closed subsets of $X\}$ with the upper topology of \subseteq (Hoare hyperspace of X)

Proposition. If:
$-X$ is well-founded

- (Property T) X is finitary
- (Property W) For all $x, y \in X, \downarrow x \cap \downarrow y$ is finitary
then X is Noetherian in the upper topology
* $\mathscr{H}(X)$ is an inf-semilattice, hence:
X is Noetherian iff:
(5) Every monotonic chain $U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots$ of open subsets is stationary
(6) Every antitonic chain $F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots$ of closed subsets is stationary
(7) $\mathscr{H} X$ is well-founded.

Proposition. If X is Noetherian, then $\mathscr{H} X$ is Noetherian.
(That is actually an equivalence.)

Finite words

* Let $X^{*}=\{$ finite words on $X\}$ with word topology: basic open sets $\left\langle U_{1}, \cdots, U_{n}\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n} X^{*}$, where each U_{i} is open in X
* The logical view: words as specific finite structures, word topology $=$ disjunctive queries (in database parlance)

$$
F::=i \in U|i<j| \perp|\mathrm{T}| F \vee F|F \wedge F| \exists i, F \quad(U \text { open in } X)
$$

letter at position i exists and is in open set U

* $\left\langle U_{1}, \cdots, U_{n}\right\rangle=\left\{\right.$ finite words satisfying $\left.\exists i_{1}, \cdots, i_{n} \cdot i_{1}<\cdots<i_{n} \wedge i_{1} \in U_{1} \wedge \cdots \wedge i_{n} \in U_{n}\right\}$
* Specialization quasi-ordering is word embedding \leq_{*}
* Theorem (JGL 2013). X Noetherian iff X^{*} Noetherian

Generalizes Higman's Lemma (Higman 1952): X wqo iff X^{*} wqo

Infinite words

- Let $X^{\leq \omega}=\{$ finite or infinite words on $X\}$ with asymptotic word topology: subbasic open sets $\left\langle U_{1}, \cdots, U_{n}\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n} X^{\leq \omega}$,

$$
\text { and }\left\langle U_{1}, \cdots, U_{n} ;(\infty) V\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n}\left(X^{*} V\right)^{\omega} \quad\left(U_{i}, V \text { open in } X\right)
$$

- The logical view: words as specific infinite structures,

$$
\begin{aligned}
F::= & i \in U|i<j| \perp|\top| F \vee F|F \wedge F| \exists i, F \\
& \mid \exists \exists^{\infty} i, G \\
G: & :=i \in U|i<j| \perp|\top| G \vee G
\end{aligned}
$$

- Theorem (JGL 2021). X Noetherian iff $X^{\leq \omega}$ Noetherian

No equivalent in wqo theory - except if you adopt bqo theory.

Transfinite words

* Let $X^{<\alpha}=\{$ ordinal-indexed words on X of length $<\alpha\}$
* Regular subword topology better described through subbasic closed sets

$$
F_{1}^{<\alpha_{1} \ldots F_{n}^{<\alpha_{n}}, ~}
$$

where each F_{i} is closed in X and each α_{i} is an ordinal

- Contains $X^{*}=X^{<\omega}$ and $X^{\leq \omega}=X^{<\omega+1}$ as special cases
- Theorem (JGL, Halfon, Lopez 2022, submitted).
X Noetherian iff $X^{<\alpha}$ Noetherian
No equivalent in wqo theory - except if you adopt bqo theory... but specialization quasi-ordering is not word embedding in general.

Topological WSTS

* So Noetherian spaces go beyond wqos, but do they have any use?
* Of course they do: a reminder of where they come from
* An application in verification

The origin of Noetherian spaces

* The spectrum $\operatorname{Spec}(R)$ of a ring R is the set of its prime ideals p
- with the Zariski topology, whose closed subsets are
$\{p \in \operatorname{Spec}(R) \mid I \subseteq p\}$, where I ranges over the ideals of R
* Fact. The spectrum of a Noetherian ring (every monotone chain of ideals is stationary) is Noetherian.
- In particular if $R=K\left[X_{1}, \cdots, X_{n}\right]$ for some Noetherian ring, e.g., \mathbb{Z}
* One can compute with ideals, represented by Gröbner bases
(Buchberger 1976)

An application of Gröbner bases in verification

* Verification of polynomial programs
(Müller-Olm\&Seidl 2002)
* Propagates ideals of $\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]$
backwards, as in the Pre* algorithm
($X_{1}, \ldots, X_{n}=$ variables of the program)

```
while (*) {
    if (*) { x=2; y=3; }
        else { x=3; y=2; }
    x = x*y-6; y=0;
    if (x}\mp@subsup{x}{}{2}-3*x*y==0
        while (*) { x=x+1; y=y-1; };
    x = x'+x*y;
}
```

- Terminates because every monotonic chain $I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{n} \subseteq \cdots$
of ideals is stationary
* ... very similar to Pre * on WSTS, but
the (infinite) transition system underlying a polynomial program is not a WSTS (inclusion between ideals not a wqo)

Topological WSTS

Definition. A topological WSTS is a transition system (X, \rightarrow) with a Noetherian topology \leq on X satisfying lower semicontinuity:
for every open subset $U, \operatorname{Pre}(U)$ is open
*Namely, replace wqo by Noetherian monotonicity by lower semicontinuity
*If the topology is Alexandroff, then Noetherian=wqo,
 lower semicontinuity=monotonicity In particular, every WSTS is a topological WSTS

* Polynomial programs are topological WSTS
— in the Zariski topology of $\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)$

Topological coverability is decidable

*Topological coverability:
INPUT: an initial configuration x_{0}, an open set U of bad configurations
QUESTION: is there a $x \in U$ such that $x_{0} \rightarrow^{*} x$?

* An effective topological WSTS is one where:
- open sets are representable
$-\subseteq$ is decidable on open sets
$-U \mapsto \operatorname{Pre}(U)$ is computable
Theorem (JGL 2011.) Topological coverability is decidable on effective topological WSTSs.
*The algorithm is the same as with WSTSs.

Definition. A topological WSTS is a transition system (X, \rightarrow) with a Noetherian topology \leq on X satisfying lower semicontinuity:
for every open subset $U, \operatorname{Pre}(U)$ is open

```
fun pre* U =
    let V = pre U
    in
        if V\subseteqU
            then U
        else pre* (U U V)
    end;
fun coverability (s, B) =
    s in pre* (B);
```


Concurrent polynomial programs

*Finite networks of polynomial programs

$$
P_{1}, \ldots, P_{m}
$$ communicating through lossy communication queues on a finite alphabet Σ

State space $=$ finite product of - spectra of polynomial rings $\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]$, one for each P_{i} $-\Sigma^{}$, with word topology, one for each communication queue This is Noetherian, because:

Proposition. Any finite product of Noetherian spaces is Noetherian.

Concurrent polynomial programs

*Those are topological WSTSs (lossiness necessary) Hence:

* Theorem (JGL 2011).

Topological coverability is decidable for concurrent polynomial programs.
*You still have to prove effectivity. For that, you need to find a representation for open sets. But open sets are no longer of the form $\uparrow\left\{x_{1}, \cdots, x_{n}\right\}$

Representations, sobrifications

Representing open sets: the trick

* Embed state space X into its sobrification X^{s}

Sober spaces and sobrifications

* A closed set $F \in \mathscr{H} X$ is irreducible iff for all $F_{1}, \cdots, F_{n} \in \mathscr{H} X, F \subseteq \bigcup_{i} F_{i} \Rightarrow \exists i, F \subseteq F_{i}$
*Every set $\downarrow x$ is irreducible closed X is sober iff T_{0} and those are the only irreducible closed sets

*The sobrification $X^{s}=\{F \in \mathscr{H} X \mid F$ irreducible $\}$, seen as subspace of $\mathscr{H} X$ is always sober, and X embeds into X^{s} through $x \mapsto \downarrow x$
E.g., $\mathscr{H} X, \operatorname{Spec}(R)$,
but not $\mathbb{N}_{\text {cof }}, X^{*}$ for example

In particular,
X Noetherian iff X^{s} Noetherian

Representing open sets: the trick

* Embed state space X into its sobrification X^{s}
* Both have isomorphic lattices of open sets
*Represent open sets U by their complements: closed sets C
*Now:
In a sober Noetherian space, every closed set C is a finitary subset $\downarrow\left\{x_{1}, \cdots, x_{n}\right\}$.
*Hence we can represent U by
(the complement of the downward closure in X^{s}) of finitely many points... in X^{s}

Reminder
Proposition. If:

- X is well-founded
- (Property T) X is finitary
- (Property W) For all $x, y \in X, \downarrow x \cap \downarrow y$ is finitary then X is Noetherian in the upper topology
and the closed sets are exactly the finitary subse

Representing points in sobrifications

*For a finite set Σ, with the discrete topology, $\Sigma^{s}=\Sigma$

* Products: $(X \times Y)^{s}=X^{s} \times Y^{s}$
* $\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)$: already sober, points $=$ prime ideals, represented as Gröbner bases

* $\left(X^{*}\right)^{s}$ consists of word products \qquad
Other word products, $\quad P::=\epsilon\left|C^{?} P\right| F^{*} P$
$C_{1}^{s} C_{2}^{\prime} F_{1}^{\text {e.g.". }}$
*All those are representable on a computer (Finkel, JGL 2009, 2021)

Statures of Noetherian spaces

* Maximal order types of well-partial-orderings
* Statures of Noetherian spaces as generalization of maximal order types
* ... we are not really changing the subject, and we will use the representations of points in X^{S} again

Maximal order types

* A well-partial-ordering is a well-quasi-ordering that is antisymmetric
* Theorem (Wolk 1967). A wpo is a partial ordering whose linear extensions are all well-founded
Note: every linear well-founded ordering is isomorphic to a unique ordinal, ... its order type
* Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.
* Any meaningful equivalent of that notion for Noetherian spaces? But first, why should we bother about maximal order types anyway?

Why bother about maximal order types?

* First studied by de Jongh and Parikh (1977) then Schmidt (1979)
* Many applications in proof theory (reverse mathematics):

Simpson (1985), after Friedman
van den Meeren, Rathjen, Weiermann $(2014,2015)$ etc.

* Ordinal complexity of the size-change principle for proving the termination of programs and rewrite systems

Blass and Gurevich (2008)

* and...

Why bother about maximal order types?

* Figueira, Figueira, Schmitz and Schnoebelen (2011), Schmitz and Schnoebelen (2011)
obtain complexity upper bounds for algorithms whose termination
is based upon wqo arguments (e.g., coverability)
* E.g., coverability
length function
(complexity upper bound)

Theorem 5.3 (Main Theorem).
Let g be a smooth control function eventually bounded by a function in $\mathscr{F}_{\gamma^{\prime}}$ and let A be an exponential nwqo with maximal order type $<\omega^{\beta+1}$. Then $L_{A, g}$ is bounded by a function in:

* \mathscr{F}_{β} if $\gamma<\omega$ (e.g., if g is primitive recursive) and $\beta \geq \omega$ $\mathscr{F}_{\gamma+\beta}$ if $\gamma \geq 2$ and $\beta<\omega$. in lossy channel systems is $F_{\sigma^{\omega}}$-complete.
(way larger than Ackermann)
class of functions elementary recursive in F_{β}

Going topological

* Let us return to the question of finding a Noetherian analogue of maximal order types

A wrong idea: minimal T_{0} topologies

- Partial ordering ~ T_{0} topology Extension ~ coarser T_{0} topology
Linear extension $=$ maximal extension \sim minimal T_{0} topology
* Studied by Larson (1969).

A minimal T_{0} topology is necessarily the upper topology of a linear ordering.

* Unfortunately, minimal T_{0} topologies do not exist in general: Fact. $\mathbb{R}_{\text {cof }}$ is Noetherian, but has no coarser minimal T_{0} topology.
(Its uncountably many proper closed subsets would all have to be finite, and linearly ordered.)

Statures of wpos

* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo (X, \leq)
The stature of X

$=$ ordinal rank $||X||$ of the top element X in the poset (\mathscr{D}, \subseteq) of downwards-closed subsets of X

* Ordinal rank inductively defined by:

$$
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{D} X, F^{\prime} \subsetneq F\right\}
$$

* Example: $X=\{0,1,2\}$, ordered by equality

maximal order type $=3$

Statures of Noetherian spaces

* Definition. The stature of a Noetherian space X is the ordinal rank $||X||$ of the top element X
in the poset ($\mathscr{H} X, \subseteq$) of closed subsets of X

$$
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{H} X, F^{\prime} \subsetneq F\right\}
$$

* Matches previous definition:
for a wqo in its Alexandroff topology, closed $=$ downwards-closed
X is Noetherian iff:
(6) Every antitonic chain $F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots$ of closed subsets is stationary
(7) $\mathscr{H} X$ is well-founded.

The stature of a finite space

* For a finite T_{0} space $X,\|X\|=\operatorname{card} X$
... a finite T0 space is just a finite poset, so that was known already

The stature of X^{*}

* Theorem (JGL, Laboureix 2022). If $X \neq \varnothing$ is Noetherian and $\alpha=\|X\|$,

$$
\text { then }\left\|X^{*}\right\|=\underset{\left(+1 \text { if } \alpha=\epsilon_{\beta}+n,-1 \text { if } \alpha \text { finite }\right)}{\omega^{\alpha \pm 1}}
$$

* Not very surprising: already known when X wqo (Schmidt 1979)
- The proof is very different, and is localic.

Explicitly, we do not reason on points (words),
but on closed sets $=$ finite unions of word products

$$
\begin{aligned}
& \left(X^{*}\right)^{s} \text { consists of word products } \\
& P::=\epsilon\left|C^{?} P\right| F^{*} P \\
& \text { with } C \in X^{s}, F=C_{1} \cup \cdots \cup C_{n}\left(C_{i} \in X^{s}\right)
\end{aligned}
$$

An excerpt from the proof of $\left\|X^{*}\right\| \geq \omega^{\omega^{\alpha \pm 1}}$

* For a well-founded poset P, let $\operatorname{Step}(P)=\{(p, q) \mid p<q\}$, strictly ordered by $(p, q)<\left(p^{\prime}, q^{\prime}\right)$ iff $q \leq p^{\prime}$
Lemma. The ordinal height of $\operatorname{Step}(P)$ is that of P minus 1.
(convention: for a non-successor ordinal $\beta, \beta-1=\beta$)
- Given $F \in \mathscr{H} X$ and $C \in X^{s}$ such that $C \nsubseteq F,(F, F \cup C) \in \operatorname{Step}(\mathscr{H} X)$
- Let $\mathbf{C}_{0}=\varnothing, \mathbf{C}_{n+1}=\left(F^{*} C^{?}\right)^{n} F^{*}, \mathscr{A}_{n}=\left\{\mathbf{A} \in \mathscr{H} X \mid \mathbf{C}_{n} \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1}\right\}$
- Map $\left(\mathbf{B}, \mathbf{B}^{+}\right) \in \operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right), \mathbf{A} \in \mathscr{A}_{n}$ to $\left(F^{*} C^{?}\right)^{n+1} \mathbf{B} \cup \mathbf{A} C^{?} \mathbf{B}^{+} \cup \mathbf{C}_{n+1}$
This is strictly monotonic : $\operatorname{Step}\left(\mathscr{H}\left(F^{}\right)\right) \times_{\text {lex }} \mathscr{A}_{n} \rightarrow \mathscr{A}_{n+1}$
A finite union of word products

An excerpt from the proof of $\left\|X^{*}\right\| \geq \omega^{\omega^{\alpha \pm 1}}$

* There is a strictly monotonic map: $\operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right) \times_{\text {lex }} \mathscr{A}_{n} \rightarrow \mathscr{A}_{n+1}$
* The ordinal height of \mathscr{A}_{n+1} is $\left\|\mathbf{C}_{n+1}\right\|$

Hence if $\left\|F^{*}\right\| \geq \omega^{\omega^{\beta}}$ then $\left\|\mathbf{C}_{n+1}\right\| \geq \omega^{\omega^{\alpha} \times(n+1)}$,

$$
\text { so }\left\|(F \cup C)^{*}\right\| \geq \omega^{\omega^{\rho+1}} \text {, by taking suprema over } n \in \mathbb{N}
$$

* This is the key step in a well-founded induction on $F \in \mathscr{H} X$ showing $\left\|F^{*}\right\| \geq \omega^{\omega^{\|F\|} \pm 1}$
* Finally, let $F=X$; by definition, $||X||=\alpha$.

The stature of $\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]$

* The ordinal height of the lattice of ideals of $\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]$ is $\omega^{n}+1$ (Aschenbrenner, Pong 2004)
* Hence $\left\|\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\right\| \leq \omega^{n} \quad$ (and I conjecture equality-not checked out of laziness)
* Only indirectly related to wqos (through leading monomials) but remember that $\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)$ is not itself wqo.
* Together with $\|X \times Y| |=||X|| \otimes\| Y \| \quad$ (JGL, Laboureix 2022) extending the same formula on wqos (de Jongh, Parikh 1977), we obtain the stature of the state space of concurrent polynomial programs...

The stature of the state space of concurrent polynomial programs

* m programs, each on n variables p queues, on $k \geq 1$ letters
* Stature of state space \leq

$$
\begin{aligned}
& \left(\omega^{n}\right)^{m} \bigotimes\left(\omega^{\omega^{k-1}}\right)^{p} \\
= & \omega^{n m \oplus \omega^{k-1} \cdot p}
\end{aligned}
$$

Concurrent polynomial programs

* Note that the contribution of the polynomial programs ($n m$) is much lower than the contribution of the queues ($\omega^{k-1} \cdot p$)
*What is the actual complexity of verifying concurrent polynomial programs?

Our findings on statures so far

statures
sobrification ranks

* We have already obtained statures of quite a few Noetherian constructions
* We retrieve the known formulae from wqo theory, which extend properly
* and new formulae for non-wqo

Noetherian spaces

* A related notion: sobrification ranks $\left|X^{s}\right|$
* Missing: finite trees, notably (see Schmidt 1979 for the wqo case)

| X | \| | X | | | sob X |
| :---: | :---: | :---: |
| finite T_{0} | card X | $\leq \operatorname{card} X$ |
| ordinal α (Alex.) | α | $\alpha / \alpha+1$ |
| $Y+Z$ | $\\| Y\| \| \oplus\| \| Z\| \| ~$ | $\max ($ sob Y, sob Z) |
| $Y+_{\text {lex }} Z$ | $\|\|Y\| I+\|\|Z\|\| ~$ | sob Y+sob Z |
| Y_{\perp} | $1+\|\|Y\|\|$ | $1+$ sob Y |
| $Y \times Z$ | $\\| Y\| \| \otimes\| \| Z\| \|$ | (sob Y ¢sob Z)-1 |
| fin. words Y^{*} | $\omega^{\wedge}\left\{\omega^{\\|\|Y\| I t 1\}}\right.$ | $\omega^{\\|\|Y\| I \pm 1}$ |
| multisets Y^{\ominus} | $\omega^{\bar{\alpha}}[\| \| Y\| \|=\alpha]$ | $\omega .\|\|Y\|\|+1 \ldots\| \| Y\| \| \otimes \omega+1$ |
| ordinal α (Scott) | $\alpha / \alpha-1$ | $\alpha / \alpha+1$ |
| cofinite topology | $\min (\operatorname{card} Y, \omega)$ | 1 / 2 |
| FY, PY | $1+\|\|Y\|\| \ldots \omega\| \| Y\| \|$ | $\|\|Y\|\|+1$ |
| words, prefix top. | $\begin{gathered} \omega^{\wedge}\left\{\omega^{\beta+1}\right\} \\ {\left[\|\|Y\|\|=\omega^{\wedge}\left\{\omega^{\beta}+\ldots\right\}+\ldots\right]} \end{gathered}$ | $\begin{gathered} \omega^{\alpha+1}+1 \\ {\left[\|\|Y\|\|-1=\omega^{\alpha+}+\ldots\right]} \end{gathered}$ |
| Y | $\leq \omega^{\wedge}\left\{\omega^{(\\| Y Y\| \|+\alpha) \pm 1}\right\}$ | $\leq \omega^{(\\| Y\| \|+\alpha) \pm 1}$ |

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022. https://arxiv.org/abs/2112.06828

* Application to actual complexity upper bounds?

Conclusion

Conclusion, research directions

* A rich theory extending wqos into the topological: Noetherian spaces
* Old results extend, new results pop up (powersets, spectra, infinite words)
* Ordinal analysis: the stature $||X||=$ ordinal rank of top element of $\mathscr{H} X$ as an analogue of maximal order types
* Still in its infancy

