Jean Goubault-Larrecq

Noetherian spaces, wqos, and their statures

With Bastien Laboureix, Aliaume Lopez, Simon Halfon

BRAVAS ENS Paris-Saclay, 11 avril 2022

universite **PARIS-SACLAY**

école normale —— supérieure — paris — saclay — —

Outline

- * Wqos, WSTS... your five minutes of comfort
- * Extending classical theorems from wqos to Noetherian spaces
- * Sobrifications of Noetherian spaces, and their representations
- * Statures of Noetherian spaces and maximal order types of wqos

Wqos and WSTS

Well-quasi-orders

* **Fact.** The following are equivalent for a quasi-ordering \leq : (1) Every sequence $(x_n)_{n \in \mathbb{N}}$ is **good**: $x_m \leq x_n$ for some m < n(2) Every sequence $(x_n)_{n \in \mathbb{N}}$ is **perfect**: has a monotone subsequence $(3) \leq$ is well-founded and has no infinite antichain. (4) Every upwards-closed subset is the upwards-closure $\uparrow \{x_1, \dots, x_n\}$ of a **finite** set (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of upwards-closed subsets is stationary

(i.e., all the sets U_n are equal from some rank on)

* **Defn.** Such a quasi-ordering \leq is called a well-quasi-order (wqo).

Examples

- * \mathbb{N} , with its usual ordering More generally, any **total well-founded** order
- * Every finite set, with any quasi-ordering
- * Finite disjoint sums, finite products of wqos are wqo
- * Images of wqos by monotonic maps are wqo (in particular quotients)
- * Inverse images of words by order-reflecting maps are word (in particular subsets)
- * **Higman's Lemma.** Let $X^* = \{$ finite words over alphabet $X\}$ ordered by word embedding \leq_* . Then X wqo $\Leftrightarrow X^*$ wqo
- * **Kruskal's Theorem.** Let $\mathcal{T}(X) = \{$ finite trees with *X*-labeled vertices $\}$ ordered by homeomorphic tree embedding \leq_T . Then *X* wqo $\Leftrightarrow \mathcal{T}(X)$ wqo.
- * And so on.

Well-structured transition systems

* A very interesting class of (infinite) transition systems where **coverability** (a special form of reachability) is **decidable**

a transition system (X, \rightarrow) with a **wqo** \leq on *X*

... and many other examples

(Abdulla, Čerāns, Jonsson & Tsay 2000, Finkel&Schnoebelen 2001)

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

Coverability is decidable

* Effective WSTSs: a transition system (X, \rightarrow) with a **wqo** \leq on *X* — points are representable satisfying (strong) monotonicity: - < is decidable $-y \mapsto \{x_1, \dots, x_n\} = \operatorname{Pre}(\uparrow y)$ is computable (so one can compute $\operatorname{Pre}(U)$)

* **Theorem.** (Abdulla et al. 2000, Finkel&Schnoebelen 2001.) Coverability is **decidable** on effective WSTSs.

* Definition. A well-structured transition system (WSTS) is

```
fun pre* U =
    let V = pre U
    in
       if V⊆U
          then U
       else pre* (U \cup V)
    end;
fun coverability (s, B) =
```

s in pre* (B);

Beyond wqos: Noetherian spaces

Going topological

- * Every quasi-ordered set (X, \leq) gives rise to a **topological space**, whose open sets are the **upwards-closed** sets (the **Alexandroff topology**) X is wqo iff: (5) Every monotonic chain
- * **Definition.** A topological space is **Noetherian** iff every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**.
- * Hence Noetherian spaces generalize wqos

(5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of upwards-closed subsets is **stationary**

Is the generalization proper?

- * It may be easier to see that \mathbb{N}_{cof} is Noetherian by realizing that:
- Proposition. A space X is Noetherian iff every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**.

(Take complements.)

* \mathbb{N}_{cof} does **not** arise from a wqo, because its specialization ordering is =, which is never wqo on an infinite set

* Yes. Consider \mathbb{N}_{cof} , the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \mathbb{N})

X is Noetherian iff:

(5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**

Properties T and W

- * Let (X, \leq) be a quasi-ordered set. Its finitary subsets are $\downarrow \{x_1, \dots, x_n\}$
- * The finitary subsets generate the **upper topology** It, too, has \leq as specialization quasi-ordering
- Proposition. If: -X is well-founded — (Property T) *X* is **finitary** — (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then *X* is **Noetherian** in the upper topology and the **closed** sets are the **finitary subsets**.

The upper topology is the **coarsest** topology with \leq as specialization The Alexandroff topology is the finest.

This turns out to be the general form of all **sober** Noetherian spaces.

Well-founded trees

- Every well-founded tree (even not finitely branching) is Noetherian in the upper topology
- * (Property T) $X = \downarrow \{r_0\}$
- * (Property W) $\downarrow x \cap \downarrow y$ is empty or equal to $\downarrow x$ or $\downarrow y$
- * Not wgo unless tree is finitely branching (infinite antichains)
- * Closed sets = finite disjoint unions of subtrees

Proposition. If:

- -X is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary**
- then *X* is **Noetherian** in the upper topology

The Hoare hyperspace of a Noetherian space

- Every well-founded inf-semilattice is Noetherian in the upper topology
- * Let $\mathcal{H}X = \{\text{closed subsets of }X\}$ with the upper topology of \subseteq (Hoare hyperspace of *X*)

* $\mathcal{H}(X)$ is an inf-semilattice, hence: **Proposition.** If *X* is Noetherian, then $\mathcal{H}X$ is Noetherian.

(That is actually an equivalence.)

* **Proposition.** If:

- -X is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary**
- then *X* is **Noetherian** in the upper topology

X is Noetherian iff:

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationarv**

(7) $\mathcal{H}X$ is well-founded.

Hinite words

- * Let *X*^{*} = {finite words on *X*} with **word topology**: basic open sets $\langle U_1, \dots, U_n \rangle = X^* U_1 X^* \cdots X^* U_n X^*$,
- * The logical view: words as specific finite structures, word topology = **disjunctive queries** (in database parlance) $F ::= i \in U \mid i < j \mid \bot \mid \top \mid F \lor F \mid F \land F \mid \exists i, F \quad (U \text{ open in } X)$

letter at position i exists and is in open set U

- * Specialization quasi-ordering is word embedding \leq_*
- Theorem (JGL 2013). X Noetherian iff X* Noetherian Generalizes Higman's Lemma (Higman 1952): X wqo iff X* wqo

where each U_i is open in X

Infinite words

- * Let $X^{\leq \omega} = \{\text{finite or infinite words on } X\}$ with **asymptotic word topology**: subbasic open sets $\langle U_1, \dots, U_n \rangle = X^* U_1 X^* \dots X^* U_n X^{\leq \omega}$, and $\langle U_1, \dots, U_n; (\infty) V \rangle = X^* U_1 X^* \dots X^* U_n (X^* V)^{\omega}$ $(U_i, V \text{ open in } X)$
- * The logical view: words as specific **infinite structures**, $F ::= i \in U \mid i < j \mid \bot \mid \top \mid F \lor F \mid F \land F \mid \exists i, F \mid \exists^{\infty} i, G$ $G ::= i \in U \mid i < j \mid \bot \mid \top \mid G \lor G$
- * Specialization quasi-ordering is (infinite) word embedding
- ★ Theorem (JGL 2021). X Noetherian iff X[≤] Noetherian
 No equivalent in wqo theory except if you adopt bqo theory.

Transfinite words

- * Let $X^{<\alpha} = \{ \text{ordinal-indexed words on } X \text{ of length } < \alpha \}$
- * Regular subword topology better described through subbasic closed sets $F_1^{<\alpha_1}\cdots F_n^{<\alpha_n}$
 - where each F_i is closed in X and each α_i is an ordinal
- * Contains $X^* = X^{<\omega}$ and $X^{\le \omega} = X^{<\omega+1}$ as special cases
- Theorem (JGL, Halfon, Lopez 2022, submitted). *X* Noetherian iff $X^{<\alpha}$ Noetherian

No equivalent in wqo theory — except if you adopt bqo theory... but specialization quasi-ordering is not word embedding in general.

Topological WSTS

- * So Noetherian spaces go beyond wqos, but do they have any use?
- * Of course they do: a reminder of where they come from
- * An application in verification

The origin of Noetherian spaces

- * The **spectrum** Spec(*R*) of a ring *R* is the set of its **prime ideals** *p*
- * with the **Zariski topology**, whose closed subsets are $\{p \in \operatorname{Spec}(R) \mid I \subseteq p\}$, where *I* ranges over the ideals of *R*
- * **Fact.** The spectrum of a Noetherian ring (every monotone chain of ideals is stationary) is Noetherian.
- * In particular if $R = K[X_1, \dots, X_n]$ for some Noetherian ring, e.g., \mathbb{Z} * One can compute with ideals, represented by Gröbner bases (Buchberger 1976)

An application of Gröbner bases in verification

- * Verification of **polynomial programs** (Müller-Olm&Seidl 2002)
- * Propagates ideals of $\mathbb{Z}[X_1, \dots, X_n]$ **backwards**, as in the Pre^{*} algorithm $(X_1, \ldots, X_n = \text{variables of the program})$
- * Terminates because every monotonic chain $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots$ of ideals is stationary
- * ... very similar to Pre^{*} on WSTS, but the (infinite) transition system underlying a polynomial program is **not** a WSTS (inclusion between ideals **not** a wqo)

Topological WSTS

* **Definition.** A topological WSTS is a transition system (X, \rightarrow) with a **Noetherian topology** \leq on *X* satisfying lower semicontinuity: for every open subset U, Pre(U) is open

* Namely, replace **wqo** by Noetherian monotonicity by lower semicontinuity

* If the topology is Alexandroff, then Noetherian=wqo, lower semicontinuity=monotonicity In particular, every WSTS is a topological WSTS

* Polynomial programs are topological WSTS — in the Zariski topology of Spec($\mathbb{Z}[X_1, \dots, X_n]$)

(JGL 2011)

Topological coverability is decidable

- * Topological coverability: **INPUT:** an initial configuration x_0 , an **open set** *U* of bad configurations **QUESTION:** is there a $x \in U$ such that $x_0 \rightarrow x$?
- * An effective topological WSTS is one where: — open sets are representable $-\subseteq$ is decidable on open sets $-U \mapsto \operatorname{Pre}(U)$ is computable
- * Theorem (JGL 2011.) Topological coverability is decidable on effective topological WSTSs.
- * The algorithm is the same as with WSTSs.

• **Definition.** A **topological WSTS** is a transition system (X, \rightarrow) with a **Noetherian topology** \leq on *X* satisfying lower semicontinuity: for every open subset U, Pre(U) is open

```
fun pre* U =
    let V = pre U
    in
       if V⊆U
          then U
       else pre* (U \cup V)
    end;
fun coverability (s, B) =
```

s in pre* (B);

Concurrent polynomial programs

* Finite networks of polynomial programs $P_1, ..., P_m$ communicating through lossy communication queues on a finite alphabet Σ while (*) {

* State space = finite **product** of — **spectra** of polynomial rings $\mathbb{Z}[X_1, \dots, X_n]$, one for each P_i $-\Sigma^*$, with word topology, one for each communication queue This is **Noetherian**, because:

* Proposition. Any finite product of Noetherian spaces is Noetherian.

(JGL 2011)

Concurrent polynomial programs

* Those are topological WSTSs (lossiness necessary) Hence:

while (*) {

*** Theorem (JGL 2011).** Topological coverability is **decidable** for concurrent polynomial programs.

* You still have to prove effectivity. For that, you need to find a representation for open sets. But open sets are **no longer** of the form $\uparrow \{x_1, \dots, x_n\}$

(JGL 2011)

Representations, sobrifications

Representing open sets: the trick

* Embed state space X into its **sobrification** X^s U Oops, I have not said what that was, have I?

Sober spaces and sobrifications

- * A closed set $F \in \mathscr{H}X$ is **irreducible** iff for all $F_1, \dots, F_n \in \mathcal{H}X, F \subseteq \bigcup_i F_i \Rightarrow \exists i, F \subseteq F_i$
- * Every set $\downarrow x$ is irreducible closed *X* is **sober** iff T_0 and those are the only irreducible closed sets
- * The sobrification $X^s = \{F \in \mathcal{H}X \mid F \text{ irreducible}\},\$ seen as subspace of $\mathscr{H}X$ is always **sober**, and *X* embeds into X^s through $x \mapsto \downarrow x$
- * X and X^s have isomorphic lattices of open subsets

E.g., $\mathcal{H}X$, Spec(R), but not \mathbb{N}_{cof} , X^* for example

In particular, X Noetherian iff X^s Noetherian

U

Representing open sets: the trick

- * Embed state space *X* into its **sobrification** *X^s*
- Both have isomorphic lattices of open sets
- * Represent open sets *U* by their complements: closed sets C
- * Now: In a sober Noetherian space, every closed set *C* is a **finitary** subset $\downarrow \{x_1, \dots, x_n\}$.

* Hence we can represent U by (the complement of the downward closure in X^s) of **finitely many** points... in X^s

28

Representing points in sobrifications

- * For a finite set Σ , with the discrete topology, $\Sigma^s = \Sigma$
- * Products: $(X \times Y)^s = X^s \times Y^s$

* Spec($\mathbb{Z}[X_1, \dots, X_n]$): already sober, points = prime ideals, represented as Gröbner bases

* $(X^*)^s$ consists of word products Other word products, $P ::= \epsilon | C^? P | F^* P$ $C_1^? C_2^? F_1^* C_3^? F_2^* F_3^*$

* All those are representable on a computer (Finkel, JGL 2009, 2021)

Embedding $X^* \rightarrow (X^*)^s$: $abc \mapsto (\downarrow a)^? (\downarrow b)^? (\downarrow c)^?$

with $C \in X^s$, $F = C_1 \cup \cdots \cup C_n$ $(C_i \in X^s)$

U

Statures of Noetherian spaces

Maximal order types of well-partial-orderings
Statures of Noetherian spaces as generalization of maximal order types
... we are not really changing the subject, and we will use the representations of points in X^s again

Maximal order types

- A well-partial-ordering is a well-quasi-ordering that is antisymmetric
 Theorem (Wolk 1967). A wpo is a partial ordering whose linear extensions are all well-founded
 - **Note**: every linear well-founded ordering is isomorphic to a unique ordinal, ... its **order type**
- * Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.
- * Any meaningful equivalent of that notion for Noetherian spaces? But first, why should we bother about maximal order types anyway?

Why bother about maximal order types?

- * First studied by de Jongh and Parikh (1977) then Schmidt (1979)
- * Many applications in proof theory (reverse mathematics): Simpson (1985), after Friedman van den Meeren, Rathjen, Weiermann (2014, 2015) etc.
- * Ordinal complexity of the size-change principle for proving the termination of programs and rewrite systems Blass and Gurevich (2008)

Why bother about maximal order types?

- * Figueira, Figueira, Schmitz and Schnoebelen (2011),
 - obtain complexity upper bounds for algorithms whose termination is based upon wqo arguments (e.g., coverability)

length function (complexity upper bound)

* E.g., coverability in lossy channel systems is $F_{\omega^{\omega}}$ -complete. (way larger than Ackermann)

class of functions elementary recursive in F_{β} (fast-growing hierarchy)

Schmitz and Schnoebelen (2011)

(and others)

Theorem 5.3 (Main Theorem). Let *g* be a smooth control function eventually bounded by a function in \mathcal{F}_{γ} and let A be an exponential nwqo with maximal order type $< \omega^{\beta+1}$. Then $L_{A,g}$ is bounded by a function in: * \mathcal{F}_{β} if $\gamma < \omega$ (e.g., if *g* is primitive recursive) and $\beta \geq \omega$ $\mathcal{F}_{\gamma+\beta}$ if $\gamma \geq 2$ and $\beta < \omega$.

> From S. Schmitz, Ph. Schnoebelen, Multiply-recursive upper bounds with Higman's Lemma. ICALP 2011.

* Let us return to the question of finding a Noetherian analogue of maximal order types

Going topological

A wrong idea: minimal T₀ topologies

- * Partial ordering ~ T₀ topology Extension ~ coarser T₀ topology Linear extension = maximal extension ~ minimal T_0 topology
- * Studied by Larson (1969).

A minimal T_0 topology is necessarily the **upper** topology of a **linear** ordering. * Unfortunately, minimal T₀ topologies do not exist in general: **Fact.** \mathbb{R}_{cof} is Noetherian, but has no coarser minimal T₀ topology. (Its uncountably many proper closed subsets would all have to be finite, and linearly ordered.)

- Theorem (Kříž 1997, Blass and Gurevich 2008). Maximal order type of a wpo (X, \leq) = ordinal rank | |X| of the top element X
- * Ordinal rank inductively defined by: $||F|| = \sup\{||F'|| + 1 | F' \in \mathcal{D}X, F' \subsetneq F\}$
- * **Example**: $X = \{0, 1, 2\},\$ ordered by equality

Statures of wpos

The **stature** of *X* in the poset ($\mathscr{D}X$, \subseteq) of downwards-closed subsets of X

Statures of Noetherian spaces

Definition. The stature of a Noetherian space X is the **ordinal rank** |X| of the top element *X*

 $\overset{}{\leftrightarrow}$

$||F|| = \sup\{||F'|| + 1 | F' \in \mathcal{H}X, F' \subseteq F\}$

* Matches previous definition: for a wqo in its Alexandroff topology, closed = downwards-closed $\mathcal{H}X = \mathcal{D}X$

in the poset ($\mathscr{H}X$, \subseteq) of **closed** subsets of *X*

X is Noetherian iff: (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary** (7) $\mathscr{H}X$ is well-founded.

The stature of a finite space

* For a finite T₀ space *X*, ||X|| = card X... a finite T0 space is just a finite poset, so that was known already

The stature of X*

- * Theorem (JGL, Laboureix 2022). If $X \neq \emptyset$ is Noetherian and $\alpha = ||X||$, then $||X^*|| = \omega^{\omega^{\alpha \pm 1}}$ $(+1 \text{ if } \alpha = \epsilon_{\beta} + n, -1 \text{ if } \alpha \text{ finite})$
- * Not very surprising: already known when X wqo (Schmidt 1979)
- The proof is very different, and is localic.
 Explicitly, we do not reason on points (words),
 but on closed sets = finite unions of word products

 $(X^*)^s \text{ consists of word products}$ $P ::= \epsilon \mid C^? P \mid F^* P$ $\text{ with } C \in X^s, F = C_1 \cup \dots \cup C_n (C_i \in X^s)$

An excerpt from the proof of $||X^*|| \ge \omega^{\omega^{\alpha \pm 1}}$

- * For a well-founded poset *P*, let Step(*P*) = {(*p*, *q*) | *p* < *q*}, strictly ordered by (*p*, *q*) < (*p*', *q*') iff *q* ≤ *p*'
 Lemma. The ordinal height of Step(*P*) is that of *P* minus 1.
- * Given *F* ∈ *ℋX* and *C* ∈ *X^s* such that *C* ⊈ *F*, (*F*, *F* ∪ *C*) ∈ Step(*ℋX*)
 * Let C₀ = Ø, C_{n+1} = (*F***C*[?])ⁿ*F**, *A_n* = {A ∈ *ℋX* | C_n ⊆ A ⊊ C_{n+1}}
 * Map (B, B⁺) ∈ Step(*ℋ*(*F**)), A ∈ *A_n* to (*F***C*[?])ⁿ⁺¹B ∪ A*C*[?]B⁺ ∪ C_{n+1}
 * This is strictly monotonic : Step(*ℋ*(*F**)) ×_{lex} *A_n* → *A_{n+1}*

(convention: for a non-successor ordinal β , $\beta - 1 = \beta$) A finite union of word products

- * There is a strictly monotonic map: $Step(\mathcal{H}(F^*)) \times_{lex} \mathcal{A}_n \to \mathcal{A}_{n+1}$
- * The ordinal height of \mathcal{A}_{n+1} is $||\mathbf{C}_{n+1}||$ Hence if $||F^*|| \ge \omega^{\omega^{\beta}}$ then $||C_{n+1}|| \ge \omega^{\omega^{\alpha} \times (n+1)}$, so $||(F \cup C)^*|| \ge \omega^{\omega^{\beta+1}}$, by taking suprema over $n \in \mathbb{N}$
- * This is the key step in a well-founded induction on $F \in \mathcal{H}X$ showing $||F^*|| \ge \omega^{\omega^{||F|| \pm 1}}$
- * Finally, let F = X; by definition, $||X|| = \alpha$. \Box

An excerpt from the proof of $||X^*|| \ge \omega^{\omega^{\alpha \pm 1}}$

The stature of $Z[X_1, \cdots, X_n]$

- * The ordinal height of the lattice of ideals of $\mathbb{Z}[X_1, \dots, X_n]$
- * Hence $||\operatorname{Spec}(\mathbb{Z}[X_1, \dots, X_n])|| \leq \omega^n$
- * Only indirectly related to wqos (through leading monomials) but remember that $\text{Spec}(\mathbb{Z}[X_1, \dots, X_n])$ is not itself wqo.
- * Together with $|X \times Y| = |X| \otimes |Y|$ extending the same formula on wqos

is $\omega^n + 1$ (Aschenbrenner, Pong 2004)

(and I conjecture equality—not checked out of laziness)

(JGL, Laboureix 2022) (de Jongh, Parikh 1977), we obtain the stature of the state space of concurrent polynomial programs...

The stature of the state space of concurrent polynomial programs

- * *m* programs, each on *n* variables *p* queues, on $k \ge 1$ letters
- * Stature of state space \leq $(\omega^{n})^{m} \bigotimes (\omega^{\omega^{k-1}})^{p}$ $= \omega^{nm \bigoplus \omega^{k-1}} p$

* Note that the contribution of the polynomial programs (*nm*)

* What is the actual complexity of verifying concurrent polynomial programs?

Concurrent polynomial programs

* Finite networks of polynomial programs $P_1, ..., P_m$ communicating through lossy communication queues on a finite alphabet Σ

* State space = finite **product** of — **spectra** of polynomial rings $\mathbb{Z}[X_1, \dots, X_n]$, one for each P_i $-\Sigma^*$, with word topology, one for each communication queue

is **much lower** than the contribution of the queues (ω^{k-1}, p)

sobrification ra statures Our findings on statures so far |X||X sob X finite T₀ card X \leq card *X* ordinal α (Alex.) $\alpha / \alpha + 1$ * We have already obtained statures of α $||Y|| \oplus ||Z||$ max(sob Y, sob Z Y + Zquite a few Noetherian constructions Y + lex Z||Y||+||Z||sob Y+sob Z * We retrieve the known formulae 1 + ||Y||1+sob Y Y_{\perp} $Y \times Z$ $||Y|| \otimes ||Z||$ (sob Y⊕sob Z)– from wgo theory, which extend properly fin. words Υ^* $\omega^{\{\omega^{|Y||\pm 1}\}}$ $\omega^{||\gamma||\pm 1}$ * and **new formulae** for non-wqo multisets Y^{\otimes} $\omega^{\tilde{\alpha}} [| | Y | | = \alpha]$ ω.||Y||+1...||Y| ordinal α (Scott) $\alpha / \alpha - 1$ $\alpha / \alpha + 1$ Noetherian spaces cofinite topology min (card Y, ω) 1 / 2 * A related notion: sobrification ranks $|X^s|$ $1 + ||Y|| \dots \omega^{||Y||}$ ||Y||+1 $\omega^{\{\omega^{\beta+1}\}}$ $\omega^{\alpha+1}+1$ * Missing: finite **trees**, notably $[| | Y | | = \omega^{\{\omega^{\beta}+...\}} + ...]$ $[||Y||-1=\omega^{\alpha}+.$ (see Schmidt 1979 for the wqo case) $\leq \omega^{(||Y||+\alpha)\pm 1}$ $\leq \omega^{\{\omega(||Y||+\alpha)\pm 1\}}$

- Application to actual **complexity** upper bounds?

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submit https://arxiv.org/abs/2112.06828

Bottom row from JGL, S. Halfon, and A. Lopez, Infinitary Noetherian Constru Transfinite Words and the Regular Subword Topology. Submitted, 2022. https://arxiv.org/abs/2202.05047

ank	S
Z)	
1	
⊗ω+1	
]	
tted, 2022.	
uctions II. 	

Conclusion, research directions

- A rich theory extending wqos into the topological: Noetherian spaces
 Old results extend, new results pop up (powersets, spectra, infinite words)
 Ordinal analysis: the stature ||X||=ordinal rank of top element of *HX* as an analogue of maximal order types
- * Still in its infancy