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Outline

❖ Wqos, WSTS… your five minutes of comfort

❖ Extending classical theorems from wqos to Noetherian spaces

❖ Sobrifications of Noetherian spaces, and their representations

❖ Statures of Noetherian spaces and maximal order types of wqos



Wqos and WSTS



Well-quasi-orders
✤ Fact.  The following are equivalent for a quasi-ordering ≤: 

(1) Every sequence  is good:  for some  
(2) Every sequence  is perfect: has a monotone subsequence 
(3) ≤ is well-founded and has no infinite antichain. 
(4) Every upwards-closed subset 
      is the upwards-closure  
      of a finite set 
(5) Every monotonic chain  
      of upwards-closed subsets is stationary 
                                                                                          (i.e., all the sets  are equal from some rank on)

✤ Defn.  Such a quasi-ordering ≤ is 
called a well-quasi-order (wqo).

(xn)n∈ℕ xm ≤ xn m < n
(xn)n∈ℕ

↑ {x1, ⋯, xn}

U1 ⊆ U2 ⊆ ⋯ ⊆ Un ⊆ ⋯

Un
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Examples
✤ , with its usual ordering   — More generally, any total well-founded order

✤ Every finite set, with any quasi-ordering
✤ Finite disjoint sums, finite products of wqos are wqo
✤ Images of wqos by monotonic maps are wqo  (in particular quotients)
✤ Inverse images of wqos by order-reflecting maps are wqo (in particular subsets)

✤ Higman’s Lemma.  Let  = {finite words over alphabet } 
                   ordered by word embedding .  Then  wqo   wqo

✤ Kruskal’s Theorem.  Let  = {finite trees with -labeled vertices} 
                   ordered by homeomorphic tree embedding .  Then  wqo   wqo.

✤ And so on.

ℕ

X* X
≤* X ⇔ X*

𝒯(X) X
≤T X ⇔ 𝒯(X)
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Well-structured transition systems
✤ A very interesting class of (infinite) transition systems 

where coverability (a special form of reachability) is decidable

✤ Definition.  A well-structured transition system (WSTS) is 
                      a transition system  
                      with a wqo  on  
                      satisfying (strong) monotonicity:

(X, → )
≤ X
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Angelic Non-Determinism, and The Hoare Powerdomain Non-Deterministic Choice
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Figure 2.1: A Petri Net Example in Biochemistry

2.1.2 An Example: Petri Nets
One of the most important examples of a (topological) well-structured transition system, with an
infinite state space, is given by Petri nets.

There are several ways of presenting Petri nets. The most concrete one is graphical, see Fig-
ure 2.1. This displays a collection of chemical reactions that are part of the mechanisms that
plants use to produce sugar (glucose C6H12O6) from carbon dioxide (CO2) and water (H2O),
and called the Calvin-Benson cycle. The circles, called places, correspond to chemical com-
pounds, while the fat, black bars are called transitions, and model chemical reactions. For
instance, there is a transition near the top right corner that takes 3 molecules of carbon diox-
ide CO2, 3 molecules of ribulose-1,5-diphosphate (nicknamed RuDP, and sometimes written
C5H8P2O11), and produces 6 molecules of 3-phosphoglycerate 3PG (C3H3PO6) and 3 molecules
of water (H2O). RuDP and CO2 are consumed in the process, but note that RuDP is regenerated
in the end by another transition that consumes 3 molecules of adenosine triphosphate ATP, 3
molecules of ribulose-5-phosphate Ru5P (C5H8PO7), and produces back 3 molecules of RuDP,
plus 3 molecules of adenosine diphosphate ADP. In the course of the process, there is a transi-
tion (shown leftmost) that generates 1 molecule of glucose C6H12O6, 3 of oxygen O2, and 1 of
phosphoric acid Pi.

Petri nets are used more pervasively in computer science (Reutenauer, 1993), and specifically
in the verification of complex, concurrent systems. But chemical examples probably convey the
idea more naturally.

Mathematically, Petri nets are transition systems on a state space of the form Nk, for some
k P N: k is the number of places (types of chemical compounds), and a state ~x P Nk specifies
how many molecules we have of each type. E.g., in the Calvin-Benson cycle example, k “ 17,
and states are of the form pnCO2 , nRuDP, n3PG, nH2O, . . . , nC6H12O6 , nO2q, where nCO2 is the number
of molecules of CO2 in the current state, nRuDP is the number of molecules of RuDP in the current
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Petri nets
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Abstract. Lossy channel systems are systems of finite state automata
that communicate via unreliable unbounded fifo channels. Today the
main open question in the theory of lossy channel systems is whether
bisimulation is decidable.
We show that bisimulation, simulation, and in fact all relations between
bisimulation and trace inclusion are undecidable for lossy channel sys-
tems (and for lossy vector addition systems).

1 Introduction

Channel Systems, also called Finite State Communicating Machines, are systems
of finite state automata that communicate via asynchronous unbounded fifo
channels. Fig. 1 displays an example. Channel systems are a natural model for
asynchronous communication protocols and constitute the semantical basis for
ISO protocol specification languages such as SDL and Estelle.

Fig. 1. A channel system with two automata and two channels

Automated verification of channel systems. Formal verification methods for chan-
nel systems are important since even the simplest communication protocols can
have tricky behaviors and hard-to-find bugs. But channel systems are Turing
powerful, and no verification method for them can be general and fully algorith-
mic. For example, existing methods only check sufficient but not necessary con-
ditions for correctness (e.g. [JJ93]), or only terminate in some cases (e.g. [PP91]),
or only deal with channel systems of a certain type (e.g. [CF97]).

N. Kobayashi and B.C. Pierce (Eds.): TACS 2001, LNCS 2215, pp. 385–399, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Lossy channel systems

... and many other examples

(Abdulla,Čerāns,Jonsson&Tsay 2000,
 Finkel&Schnoebelen 2001)

letters can spontaneously vanish from communication queues
(needed for decidability… and rather realistic)



Coverability is decidable
✤ Effective WSTSs: 

— points are representable 
—  is decidable 
—  is computable (so one can compute )

✤ Theorem. (Abdulla et al. 2000, Finkel&Schnoebelen 2001.) 
                   Coverability is decidable on effective WSTSs.

≤
y ↦ {x1, ⋯, xn} = Pre( ↑ y) Pre(U)
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fun pre* U =
    let V = pre U
    in
       if V⊆U
          then U
       else pre* (U ⋃ V)
    end;

fun coverability (s, B) =
    s in pre* (B);



Beyond wqos: Noetherian spaces



Going topological
❖ Every quasi-ordered set  gives rise to a topological space, 

           whose open sets are the upwards-closed sets 
                        (the Alexandroff topology)

❖ Definition.  A topological space is Noetherian 
              iff every monotonic chain  
                                                       of open subsets is stationary.

❖ Proposition.   is wqo 
                     iff  is Noetherian 
                          in its Alexandroff topology.

❖ Hence Noetherian spaces generalize wqos

(X, ≤ )

U1 ⊆ U2 ⊆ ⋯ ⊆ Un ⊆ ⋯

(X, ≤ )
X

 is wqo iff: 
(5) Every monotonic chain  
      of upwards-closed subsets is stationary

X
U1 ⊆ U2 ⊆ ⋯ ⊆ Un ⊆ ⋯



Is the generalization proper?
❖ Yes.  Consider , the set of natural numbers with the cofinite topology, 

                                             whose closed sets are the finite subsets (plus )

❖ It may be easier to see that  is Noetherian 
by realizing that:

❖ Proposition.  A space  is Noetherian iff 
        every antitonic chain  of closed subsets 
                   is stationary. 
                  (Take complements.)

❖  does not arise from a wqo, because its specialization ordering is =, 
which is never wqo on an infinite set

ℕcof
ℕ

ℕcof

X
F1 ⊇ F2 ⊇ ⋯ ⊇ Fn ⊇ ⋯

ℕcof

 is Noetherian iff: 
(5) Every monotonic chain  
      of open subsets is stationary

X
U1 ⊆ U2 ⊆ ⋯ ⊆ Un ⊆ ⋯



❖ Let  be a quasi-ordered set. 
Its finitary subsets are 

❖ The finitary subsets generate the upper topology 
It, too, has  as specialization quasi-ordering

❖ Proposition.  If: 
—  is well-founded 
— (Property T)  is finitary 
— (Property W) For all ,  is finitary 
then  is Noetherian in the upper topology 
         and the closed sets are the finitary subsets.

(X, ≤ )
↓ {x1, ⋯, xn}

≤

X
X

x, y ∈ X ↓ x ∩ ↓ y
X

Properties T and W
x1

x2

xn

The upper topology is the coarsest topology 
with ≤ as specialization

The Alexandroff topology is the finest.

This turns out to be the general form 
of all sober Noetherian spaces.



❖ Every well-founded tree 
           (even not finitely branching) 
is Noetherian in the upper topology

❖ (Property T) 

❖ (Property W)  is empty or equal to  or 

❖ Not wqo unless tree is finitely branching 
        (infinite antichains)

❖ Closed sets = finite disjoint unions of subtrees

X = ↓ {r0}

↓ x ∩ ↓ y ↓ x ↓ y

Well-founded trees

…

…

r0



❖ Every well-founded inf-semilattice is 
Noetherian in the upper topology

❖ Let  = {closed subsets of } 
      with the upper topology of  
      (Hoare hyperspace of ) 

❖  is an inf-semilattice, hence: 
Proposition. If  is Noetherian, then  is Noetherian.  
  
                                    (That is actually an equivalence.)

ℋX X
⊆

X

ℋ(X)
X ℋX

The Hoare hyperspace of a Noetherian space

 is Noetherian iff: 
(5) Every monotonic chain  
      of open subsets is stationary 
(6) Every antitonic chain  
      of closed subsets is stationary

X
U1 ⊆ U2 ⊆ ⋯ ⊆ Un ⊆ ⋯

F1 ⊇ F2 ⊇ ⋯ ⊇ Fn ⊇ ⋯

(7)  is well-founded.ℋX



❖ Let  = {finite words on } with word topology: 
basic open sets  = ,           where each  is open in 

❖ The logical view: words as specific finite structures, 
word topology = disjunctive queries                (in database parlance) 
             (  open in ) 

❖  = {finite words satisfying }

❖ Specialization quasi-ordering is word embedding 

❖ Theorem (JGL 2013).   Noetherian iff  Noetherian 
Generalizes Higman’s Lemma (Higman 1952):  wqo iff  wqo

X* X
⟨U1, ⋯, Un⟩ X*U1X*⋯X*UnX* Ui X

F ::= i ∈ U ∣ i < j ∣ ⊥ ∣ ⊤ ∣ F ∨ F ∣ F ∧ F ∣ ∃i, F U X

⟨U1, ⋯, Un⟩ ∃i1, ⋯, in ⋅ i1 < ⋯ < in ∧ i1 ∈ U1 ∧ ⋯ ∧ in ∈ Un

≤*

X X*
X X*

Finite words

a b c

a B c’

T
he

st
at

em
en

t
of

T
he

or
em

2
se

em
s

ve
ry

fa
r

fr
om

H
ig

m
an

’s
Le

m
m

a.
C

al
l

co
ns

tr
uc

ti
ve

N
oe

th
er

ia
n

sp
ac

e
an

y
tu

pl
e

p
X
,T

,†
,"

q
,w

he
re

†
is

a
w

el
l-f

ou
nd

ed
or

de
ri

ng
on

th
e

se
t
T

(T
is

th
e

co
to

po
lo

gy
)

w
ho

se
re

fle
xi

ve
cl

os
ur

e
®

m
ak

es
T

a
di

st
ri

bu
ti

ve
la

tt
ic

e
(t

hi
s

m
uc

h
im

pl
ie

s
cl

as
si

ca
lly

th
at

p
T
,®

q
is

th
e

la
tt

ic
e

of
cl

os
ed

su
bs

et
s

of
so

m
e

N
oe

th
er

ia
n

sp
ac

e,
up

to
is

om
or

ph
is

m
),

an
d
"

Ñ
X

ˆ
T

(m
em

be
rs

hi
p)

is
a

bi
na

ry
re

la
ti

on
su

ch
th

at
fo

r
al

lA
,B

P
T

,A
®

B
iff

fo
r

ev
er

y
x
"
A

,x
"
B

.W
e

ob
se

rv
e

th
e

fo
llo

w
in

g:

p
a

q
G

iv
en

a
co

ns
tr

uc
ti

ve
S-

re
pr

es
en

ta
ti

on
p
S
,Ä

,⌧
,^

q
,w

e
th

in
k

of
el

em
en

ts
of

S
as

ir
re

du
ci

bl
e

cl
os

ed
su

bs
et

so
fs

om
e

N
oe

th
er

ia
n

sp
ac

e
X

,a
nd

w
e

ca
n

bu
ild

al
l

cl
os

ed
se

ts
as

fin
it
e

un
io

ns
th

er
eo

f.
W

e
en

co
de

th
e

la
tt

er
as

fin
it
e

an
ti
ch

ai
ns

,
he

nc
e

as
m

ul
ti
se

ts
.L

et
ti
ng

T
“

M
p
S

q
,†

“
Ä

` m
u
l
th

en
de

fin
es

th
e

ca
no

ni
ca

l
co

to
po

lo
gy

on
p
S
,Ä

,⌧
,^

q
.A

ny
su

bs
et

X
of

S
th

en
gi

ve
s
ri

se
to

a
co

ns
tr

uc
ti

ve
N

oe
th

er
ia

n
sp

ac
e

p
X
,M

p
S

q
,Ä

` m
u
l,
"q

,w
he

re
x
"
M

iff
t|
x

|u
p
Ä

m
u
lq

˚
M

.
p
bq

C
on

ve
rs

el
y,

ev
er

y
co

to
po

lo
gy

p
T
,†

q
gi

ve
s

ri
se

to
a

tr
iv

ia
l

co
ns

tr
uc

ti
ve

S-
re

pr
es

en
ta

ti
on

p
S
,Ä

,⌧
,^

q
w

he
re

S
“

T
,Ä

is
†

,⌧
“

t
J

u
w

he
re

J
is

th
e

to
p

el
em

en
t

of
T

,a
nd

A
^
B

“
t
A

[
B

u
w

he
re

[
is

m
ee

t
in

T
.

G
iv

en
p
a

q
an

d
p
bq

,T
he

or
em

2
an

d
Le

m
m

a
1

th
en

im
pl

y:

C
o
r
o
ll
a
r
y

1
(
T
o
p
o
lo

g
ic

a
l

H
ig

m
a
n

L
e
m

m
a
,

C
o
n
s
t
r
u
c
t
iv

e
ly

)
.

Fo
r

ev
er

y
co

ns
tr

uc
ti
ve

N
oe

th
er

ia
n

sp
ac

e
p
X
,T

,†
,"

q
,

p
X

˚ ,
M

p
T

w
q
,p

†
w m

u
lq

`
,"

w
q

is
a

co
n-

st
ru

ct
iv

e
N

oe
th

er
ia

n
sp

ac
e,

w
it
h
w

"w
M

iff
t|
⌘
w

p
w

q
|u

p
†

w m
u
lq

˚
M

,
w
he

re
⌘
w

p
x
1

x
2
..
.x

m
q

“
x
? 1
x
? 2
..
.x

? m
.

T
hi

s
im

pl
ie

s
th

e
us

ua
l

fo
rm

of
H

ig
m

an
’s

Le
m

m
a,

by
si

m
ila

r
ar

gu
m

en
ts

as
in

[3
5]

.
A

ss
um

in
g

a
de

ci
da

bl
e

co
ns

tr
uc

ti
ve

w
qo

§
on

a
se

t
X

,
on

e
ca

n
sh

ow
,

co
ns

tr
uc

ti
ve

ly
,
th

at
th

e
an

ti
ch

ai
ns

E
“

t
x
1
,.
..
,x

n
u

(i
nt

er
pr

et
ed

as
th

e
[d

ow
n-

w
ar

d]
cl

os
ed

se
t
X

r
Ò
E

)
ar

e
th

e
el

em
en

ts
of

a
co

to
po

lo
gy

,w
he

re
†

is
th

e
st

ri
ct

pa
rt

of
®

;
w

e
le

t
E

®
E

1
iff

X
r

Ò
E

Ñ
X

r
Ò
E

1 ,
iff

fo
r

ev
er

y
y

P
X

1 ,
th

er
e

is
an

x
P
E

su
ch

th
at

x
§

y
;

an
d
x
"
E

iff
x

P
X

r
Ò
E

,
iff

fo
r

ev
er

y
y

P
E

,
y

¶
x
.
R

ec
al

l
th

at
a

fin
it

e
se

qu
en

ce
w

1
,
..

.,
w

n
in

X
˚

is
ba

d
iff

w
i

§
˚
w

j
fo

r
no

i
†

j.
Fo

llo
w

in
g

M
ur

th
y

an
d

R
us

se
ll,

w
e

sh
ow

th
at

th
e

co
nv

er
se

of
th

e
pr

efi
x

or
de

ri
ng

on
ba

d
se

qu
en

ce
s
w

1
,.

..
,w

n
is

w
el

l-f
ou

nd
ed

,b
y

p
†

w m
u
lq

`
-in

du
ct

io
n

on
th

e
cl

os
ed

su
bs

et
X

˚
r

Ò
t
w

1
,.
..
,w

n
u
—

th
is

in
du

ct
io

n
pr

in
ci

pl
e

is
gi

ve
n

to
us

by
C

or
ol

la
ry

1.
T

he
se

t
X

˚
r

Ò
t
w

1
,.
..
,w

n
u

is
re

pr
es

en
te

d,
co

ns
tr

uc
ti

ve
ly

,
as

th
e

fin
it

e
in

te
rs

ec
ti

on
of

th
e

se
ts

X
r

Ò
w

i,
us

in
g

th
e

J
an

d
[

op
er

at
io

ns
of

th
e

co
to

po
lo

gy
;

w
ri

ti
ng

w
i

as
th

e
w

or
d
x
1
x
2
..
.x

m
,
X

r
Ò
w

i
is

th
e

w
or

d-
pr

od
uc

t
p
X
r

Ò
x
1
q

˚ X
?
p
X
r

Ò
x
2
q

˚ X
?
..
.X

?
p
X
r

Ò
x
m

q
˚

if
m

•
1,

th
e

em
pt

y
se

t
ot

he
rw

is
e

[2
1,

Le
m

m
a

6.
1]

.T
hi

s
is

th
e

co
re

of
M

ur
th

y
an

d
R

us
se

ll’
s

pr
oo

f:

T
h
e
o
r
e
m

3
(
M

u
r
t
h
y
-
R

u
s
s
e
ll
)
.

Le
t
X

be
a

se
t
w
it
h

a
de

ci
da

bl
e

co
ns

tr
uc

ti
ve

w
qo

§
.
T

he
n

§
˚

is
a

(d
ec

id
ab

le
)

co
ns

tr
uc

ti
ve

w
qo

on
X

˚ .

5
A

co
n
st

ru
ct

iv
e

p
ro

of
of

K
ru

sk
al

’s
T

h
eo

re
m

W
e

us
e

th
e

sa
m

e
st

ra
te

gy
fo

r
tr

ee
s,

i.e
.,

fir
st

-o
rd

er
te

rm
s.

G
iv

en
a

se
t
X

w
it

h
a

qu
as

i-o
rd

er
in

g
§

,t
he

(t
re

e)
em

be
dd

in
g

qu
as

i-o
rd

er
in

g
®

§
is

in
du

ct
iv

el
y

de
fin

ed

Insert letters, 
increase letters

letter at position i exists and is in open set U



❖ Let  = {finite or infinite words on } with asymptotic word topology: 
subbasic open sets        = , 
                    and  =           ( ,  open in )

❖ The logical view: words as specific infinite structures, 
         
                
        

❖ Specialization quasi-ordering is (infinite) word embedding

❖ Theorem (JGL 2021).   Noetherian iff  Noetherian 
No equivalent in wqo theory — except if you adopt bqo theory.

X≤ω X
⟨U1, ⋯, Un⟩ X*U1X*⋯X*UnX≤ω

⟨U1, ⋯, Un; (∞)V⟩ X*U1X*⋯X*Un(X*V)ω Ui V X

F ::= i ∈ U ∣ i < j ∣ ⊥ ∣ ⊤ ∣ F ∨ F ∣ F ∧ F ∣ ∃i, F
∣ ∃∞i, G

G ::= i ∈ U ∣ i < j ∣ ⊥ ∣ ⊤ ∣ G ∨ G

X X≤ω

Infinite words

…

…

a b c

a B c’
Insert letters, 

increase letters



❖ Let  = {ordinal-indexed words on  of length }

❖ Regular subword topology better described through subbasic closed sets 
                                                   
where each  is closed in  and each  is an ordinal

❖ Contains  and  as special cases

❖ Theorem (JGL, Halfon, Lopez 2022, submitted). 
                  Noetherian iff  Noetherian 
No equivalent in wqo theory — except if you adopt bqo theory… 
but specialization quasi-ordering is not word embedding in general.

X<α X < α

F<α1
1 ⋯F<αn

n
Fi X αi

X* = X<ω X≤ω = X<ω+1

X X<α

Transfinite words



Topological WSTS



❖ So Noetherian spaces go beyond wqos, 
                          but do they have any use?

❖ Of course they do: a reminder of where they come from

❖ An application in verification



The origin of Noetherian spaces
❖ The spectrum  of a ring  is the set of its prime ideals 

❖ with the Zariski topology, whose closed subsets are 
                , where  ranges over the ideals of 

❖ Fact.  The spectrum of a Noetherian ring                 (every monotone chain of ideals is stationary) 
                                       is Noetherian.

❖ In particular if  for some Noetherian ring, e.g., 

❖ One can compute with ideals, represented by Gröbner bases 
                                (Buchberger 1976)

Spec(R) R p

{p ∈ Spec(R) ∣ I ⊆ p} I R

R = K[X1, ⋯, Xn] ℤ



An application of Gröbner bases in verification
❖ Verification of polynomial programs 

                     (Müller-Olm&Seidl 2002)

❖ Propagates ideals of  
            backwards, as in the  algorithm 
                                                     (  = variables of the program)

❖ Terminates because every monotonic chain  
           of ideals is stationary

❖ … very similar to  on WSTS, but 
     the (infinite) transition system underlying a polynomial program 
           is not a WSTS (inclusion between ideals not a wqo)

ℤ[X1, ⋯, Xn]
Pre*

X1, …, Xn

I0 ⊆ I1 ⊆ ⋯ ⊆ In ⊆ ⋯

Pre*

while (*) {
  if (*) { x=2; y=3; }
    else { x=3; y=2; }
  x = x*y-6; y=0;
  if (x2-3*x*y==0)
     while (*) { x=x+1; y=y-1; };
  x = x2+x*y;
}



Topological WSTS
✤ Definition.  A topological WSTS is a transition system  

                      with a Noetherian topology  on  
                      satisfying lower semicontinuity: 
                                       for every open subset ,  is open

✤ Namely, replace wqo                 by Noetherian 
                             monotonicity by lower semicontinuity

✤ If the topology is Alexandroff, then Noetherian=wqo, 
                             lower semicontinuity=monotonicity 
In particular, every WSTS is a topological WSTS

✤ Polynomial programs are topological WSTS 
                                              — in the Zariski topology of 

(X, → )
≤ X

U Pre(U)

Spec(ℤ[X1, ⋯, Xn])
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x

x

≤

y

y

≤

∀
∃

(JGL 2011)



Topological coverability is decidable
✤ Topological coverability: 

INPUT: an initial configuration , 
               an open set  of bad configurations 
QUESTION: is there a  such that ?

✤ An effective topological WSTS is one where: 
— open sets are representable 
—  is decidable on open sets 
—  is computable

✤ Theorem (JGL 2011.) Topological coverability is decidable 
                                     on effective topological WSTSs.

✤ The algorithm is the same as with WSTSs.

x0
U

x ∈ U x0 →* x

⊆
U ↦ Pre(U)

22

fun pre* U =
    let V = pre U
    in
       if V⊆U
          then U
       else pre* (U ⋃ V)
    end;

fun coverability (s, B) =
    s in pre* (B);



✤ Finite networks of 
polynomial programs 
         , …,  
communicating through 
lossy communication 
queues on a finite alphabet 

✤ State space = finite product of 
                        — spectra of polynomial rings , one for each  
                        — , with word topology, one for each communication queue 
This is Noetherian, because:

✤ Proposition.  Any finite product of Noetherian spaces is Noetherian.

P1 Pm

Σ

ℤ[X1, ⋯, Xn] Pi
Σ*

Concurrent polynomial programs
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(JGL 2011)

' ::= P (t) ground atom
| s < t order atom
| 9x · '
| ' ^ '
| ' _ '

t ::= x variable
| c constant

{D1, D2, . . . , Dn}

Di v D

x0 bad
x0, x1 bad
x0, x1, x2 bad

...
x0, x1, x2, . . . , xn bad
! stop

8x, y · x  y _ x 6 y

~a ! ~b+ ~d|{z}
in Zk

" {x1, x2, . . . , xm}

xi

" t # v

while (*) {
recv (SIG_CALC) ) if (*) { x = 2; y = 3; }

else { x = 3; y = 2; }
x = x ⇤ y� 6; y = 0;
if (x2 � 3 ⇤ x ⇤ y == 0)

while (*) { x = x+ 1; y = y� 1; };
else send (SIG_FUZZ);

x = x2 + x ⇤ y;
| recv (SIG_QUIT) ) return;

}
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Abstract. Lossy channel systems are systems of finite state automata
that communicate via unreliable unbounded fifo channels. Today the
main open question in the theory of lossy channel systems is whether
bisimulation is decidable.
We show that bisimulation, simulation, and in fact all relations between
bisimulation and trace inclusion are undecidable for lossy channel sys-
tems (and for lossy vector addition systems).

1 Introduction

Channel Systems, also called Finite State Communicating Machines, are systems
of finite state automata that communicate via asynchronous unbounded fifo
channels. Fig. 1 displays an example. Channel systems are a natural model for
asynchronous communication protocols and constitute the semantical basis for
ISO protocol specification languages such as SDL and Estelle.

Fig. 1. A channel system with two automata and two channels

Automated verification of channel systems. Formal verification methods for chan-
nel systems are important since even the simplest communication protocols can
have tricky behaviors and hard-to-find bugs. But channel systems are Turing
powerful, and no verification method for them can be general and fully algorith-
mic. For example, existing methods only check sufficient but not necessary con-
ditions for correctness (e.g. [JJ93]), or only terminate in some cases (e.g. [PP91]),
or only deal with channel systems of a certain type (e.g. [CF97]).

N. Kobayashi and B.C. Pierce (Eds.): TACS 2001, LNCS 2215, pp. 385–399, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

a = ⇤; b = 0;
while (*) {

recv (SIG_FUZZ) ) send (SIG_CALC);
b = b+ 1;
if (a 6= b) { a = a+ 1; }
c = a ⇤ b;

| recv (SIG_QUIT) ) return;
}

2

letters can spontaneously vanish 
from communication queues

(needed for decidability… and rather realistic)



✤ Those are 
topological WSTSs 
(lossiness necessary) 
Hence:

✤ Theorem (JGL 2011). 
Topological coverability is decidable 
for concurrent polynomial programs.

✤ You still have to prove effectivity. 
For that, you need to find a representation for open sets. 
But open sets are no longer of the form ↑ {x1, ⋯, xn}

Concurrent polynomial programs
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' ::= P (t) ground atom
| s < t order atom
| 9x · '
| ' ^ '
| ' _ '
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" {x1, x2, . . . , xm}

xi

" t # v
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of finite state automata that communicate via asynchronous unbounded fifo
channels. Fig. 1 displays an example. Channel systems are a natural model for
asynchronous communication protocols and constitute the semantical basis for
ISO protocol specification languages such as SDL and Estelle.

Fig. 1. A channel system with two automata and two channels

Automated verification of channel systems. Formal verification methods for chan-
nel systems are important since even the simplest communication protocols can
have tricky behaviors and hard-to-find bugs. But channel systems are Turing
powerful, and no verification method for them can be general and fully algorith-
mic. For example, existing methods only check sufficient but not necessary con-
ditions for correctness (e.g. [JJ93]), or only terminate in some cases (e.g. [PP91]),
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N. Kobayashi and B.C. Pierce (Eds.): TACS 2001, LNCS 2215, pp. 385–399, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

a = ⇤; b = 0;
while (*) {

recv (SIG_FUZZ) ) send (SIG_CALC);
b = b+ 1;
if (a 6= b) { a = a+ 1; }
c = a ⇤ b;

| recv (SIG_QUIT) ) return;
}

2

letters can spontaneously vanish 
from communication queues

(needed for decidability… and rather realistic)



Representations, sobrifications



✤ Embed state space  into its sobrification X Xs

Representing open sets: the trick
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U

X

Oops, I have not said what that was,
have I?



Xs

✤ A closed set  is irreducible iff 
       for all , 

✤ Every set  is irreducible closed 
 is sober iff T0 

               and those are the only irreducible closed sets

✤ The sobrification  = , 
        seen as subspace of  is always sober, 
        and  embeds into  through 

✤  and  have isomorphic lattices of open subsets

F ∈ ℋX
F1, ⋯, Fn ∈ ℋX F ⊆ ⋃i

Fi ⇒ ∃i, F ⊆ Fi

↓ x
X

Xs {F ∈ ℋX ∣ F irreducible}
ℋX

X Xs x ↦ ↓ x

X Xs

Sober spaces and sobrifications
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U

X

E.g., , , 
but not ,  for example

ℋX Spec(R)
ℕcof X*

In particular, 
 Noetherian iff  NoetherianX Xs



Xs

✤ Embed state space  into its sobrification 

✤  Both have isomorphic lattices of open sets

✤ Represent open sets  by their complements: 
                  closed sets 

✤ Now: 
In a sober Noetherian space, every closed set  
                   is a finitary subset .

✤ Hence we can represent  by 
                   (the complement of the downward closure in ) 

            of finitely many points… in 

X Xs

U
C

C
↓ {x1, ⋯, xn}

U
Xs

Xs

Representing open sets: the trick

28

U

X

C

x1

x2

xn

❖ Proposition.  If: 
—  is well-founded 
— (Property T)  is finitary 
— (Property W) For all ,  is finitary 
then  is Noetherian in the upper topology 
         and the closed sets are exactly the finitary subsets.

X
X

x, y ∈ X ↓ x ∩ ↓ y
X

Reminder

This turns out to be the general form 
of all sober Noetherian spaces.



Other word products,
e.g.,

C?
1C?

2F*1 C?
3F*2 F*3

Xs

✤ For a finite set , with the discrete topology, 
          

✤ Products: 

✤ : already sober, 
        points = prime ideals, represented as Gröbner bases

✤  consists of word products 
                          
                                    with ,  ( )

✤ All those are representable on a computer (Finkel, JGL 2009, 2021)

Σ
Σs = Σ

(X × Y)s = Xs × Ys

Spec(ℤ[X1, ⋯, Xn])

(X*)s

P ::= ϵ ∣ C?P ∣ F*P
C ∈ Xs F = C1 ∪ ⋯ ∪ Cn Ci ∈ Xs

Representing points in sobrifications
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U

X

C

Embedding :X* → (X*)s

abc ↦ ( ↓ a)?( ↓ b)?( ↓ c)?



Statures of Noetherian spaces



❖ Maximal order types of well-partial-orderings

❖ Statures of Noetherian spaces as generalization of maximal order types

❖ … we are not really changing the subject, 
     and we will use the representations of points in  againXs



Maximal order types
❖ A well-partial-ordering is a well-quasi-ordering that is antisymmetric

❖ Theorem (Wolk 1967).  A wpo is a partial ordering whose linear extensions 
                                          are all well-founded 
Note: every linear well-founded ordering is isomorphic to a unique ordinal, 
                                                                                                        … its order type

❖ Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.

❖ Any meaningful equivalent of that notion for Noetherian spaces? 
But first, why should we bother about maximal order types anyway?



Why bother about maximal order types?
❖ First studied by de Jongh and Parikh (1977) 

                         then Schmidt (1979)

❖ Many applications in proof theory (reverse mathematics): 
                         Simpson (1985), after Friedman 
                         van den Meeren, Rathjen, Weiermann (2014, 2015) 
                         etc.

❖ Ordinal complexity of the size-change principle for proving 
the termination of programs and rewrite systems 
                        Blass and Gurevich (2008)

❖ and…



Why bother about maximal order types?
❖ Figueira, Figueira, Schmitz and Schnoebelen (2011), 

                                 Schmitz and Schnoebelen (2011)                     (and others) 
obtain complexity upper bounds 
for algorithms whose termination 
     is based upon wqo arguments 
(e.g., coverability)

❖ E.g., coverability 
in lossy channel systems 
is -complete. 
                  (way larger than Ackermann)

Fωω
From S. Schmitz, Ph. Schnoebelen, Multiply-recursive 

upper bounds with Higman’s Lemma.  ICALP 2011.

Theorem 5.3 (Main Theorem). 
Let g be a smooth control function 
                  eventually bounded by a function in , 
and let  be an exponential nwqo 
                  with maximal order type . 
Then  is bounded by a function in:
❖  if  (e.g., if g is primitive recursive) and 
❖  if  and .

ℱγ
A

< ωβ+1

LA,g

ℱβ γ < ω β ≥ ω
ℱγ+β γ ≥ 2 β < ω

length function 
(complexity upper bound)

maximal order type

class of functions 
elementary recursive in  
(fast-growing hierarchy)

Fβ



Going topological

❖ Let us return to the question of finding a Noetherian analogue 
                                                                        of maximal order types



A wrong idea: minimal T0 topologies
❖ Partial ordering ~ T0 topology 

Extension ~ coarser T0 topology 
Linear extension = maximal extension ~ minimal T0 topology

❖ Studied by Larson (1969). 
A minimal T0 topology is necessarily the upper topology of a linear ordering.

❖ Unfortunately, minimal T0 topologies do not exist in general: 
Fact.   is Noetherian, but has no coarser minimal T0 topology. 
          (Its uncountably many proper closed subsets would all have to be finite, and linearly ordered.)

ℝcof



❖ Theorem (Kříž 1997, Blass and Gurevich 2008). 
    Maximal order type of a wpo  
                    = ordinal rank  of the top element  
                                      in the poset  of downwards-closed subsets of 

❖ Ordinal rank inductively defined by: 
                   

❖ Example: , 
ordered by equality

(X, ≤ )
| |X | | X

(𝒟X, ⊆ ) X

| |F | | = sup{ | |F′￼| | + 1 ∣ F′￼ ∈ 𝒟X, F′￼ ⊊ F}

X = {0,1,2}

Statures of wpos

0 1 2

maximal order type=3

{0} {1} {2}

∅

{0,1} {0,2} {1,2}

{0,1,2}

rank 0

rank 1

rank 2

rank 3

𝒟X

The stature of X



❖ Definition.  The stature of a Noetherian space  is 
                      the ordinal rank  of the top element  
                                                     in the poset  of closed subsets of 

❖                   

❖ Matches previous definition: 
for a wqo in its Alexandroff topology, 
      closed = downwards-closed 
          

X
| |X | | X

(ℋX, ⊆ ) X

| |F | | = sup{ | |F′￼| | + 1 ∣ F′￼ ∈ ℋX, F′￼ ⊊ F}

ℋX = 𝒟X

Statures of Noetherian spaces

 is Noetherian iff: 
(6) Every antitonic chain  
      of closed subsets is stationary 
(7)  is well-founded.

X
F1 ⊇ F2 ⊇ ⋯ ⊇ Fn ⊇ ⋯

ℋX



❖ For a finite T0 space ,  
… a finite T0 space is just a finite poset, so that was known already

X | |X | | = card X

The stature of a finite space

{0} {1} {2}

∅

{0,1} {0,2} {1,2}

{0,1,2}

rank 0

rank 1

rank 2

rank 3

0 1 2
X =

{0} {2}

∅

{0,2}

{0,1,2}

rank 0

rank 1

rank 2

rank 3

0

1

2
X =

{0}

∅

{0,1,2}

rank 0

rank 1

rank 2

rank 3

X =

0

1

2

{0,1}ℋX = ℋX = ℋX =



❖ Theorem (JGL, Laboureix 2022).  If  is Noetherian and , 
                            then  
                                                                                      (+1 if ,   –1 if  finite)

❖ Not very surprising: already known when  wqo (Schmidt 1979)

❖ The proof is very different, and is localic. 
Explicitly, we do not reason on points (words), 
                                           but on closed sets = finite unions of word products

X ≠ ∅ α = | |X | |
| |X* | | = ωωα±1

α = ϵβ + n α

X

The stature of X*

 consists of word products 
                          
                                    with ,  ( )

(X*)s

P ::= ϵ ∣ C?P ∣ F*P
C ∈ Xs F = C1 ∪ ⋯ ∪ Cn Ci ∈ Xs



❖ For a well-founded poset , let , 
           strictly ordered by  iff  
Lemma.  The ordinal height of  is that of  minus 1. 
                                                                                                                  (convention: for a non-successor ordinal , )

❖ Given  and  such that , 

❖ Let , , 

❖ Map ,  to 

❖ This is strictly monotonic 

P Step(P) = {(p, q) ∣ p < q}
(p, q) < (p′￼, q′￼) q ≤ p′￼

Step(P) P
β β − 1 = β

F ∈ ℋX C ∈ Xs C ⊈ F (F, F ∪ C) ∈ Step(ℋX)

C0 = ∅ Cn+1 = (F*C?)nF* 𝒜n = {A ∈ ℋX ∣ Cn ⊆ A ⊊ Cn+1}

(B, B+) ∈ Step(ℋ(F*)) A ∈ 𝒜n (F*C?)n+1B ∪ AC?B+ ∪ Cn+1

: Step(ℋ(F*)) ×lex 𝒜n → 𝒜n+1

An excerpt from the proof of | |X* | | ≥ ωωα±1

A finite union 
of word products



❖ There is a strictly monotonic map

❖ The ordinal height of  is  
Hence if  then , 
           so , by taking suprema over 

❖ This is the key step in a well-founded induction on  
           showing 

❖ Finally, let ; by definition, .  ☐

: Step(ℋ(F*)) ×lex 𝒜n → 𝒜n+1

𝒜n+1 | |Cn+1 | |
| |F* | | ≥ ωωβ | |Cn+1 | | ≥ ωωα×(n+1)

| | (F ∪ C)* | | ≥ ωωβ+1 n ∈ ℕ

F ∈ ℋX
| |F* | | ≥ ωω||F||±1

F = X | |X | | = α

An excerpt from the proof of | |X* | | ≥ ωωα±1



The stature of ℤ[X1, ⋯, Xn]

❖ The ordinal height of the lattice of ideals of  
                               is  (Aschenbrenner, Pong 2004)

❖ Hence                  (and I conjecture equality—not checked out of laziness)

❖ Only indirectly related to wqos (through leading monomials) 
but remember that  is not itself wqo.

❖ Together with          (JGL, Laboureix 2022) 
                extending the same formula on wqos   (de Jongh, Parikh 1977), 
we obtain the stature of the state space of concurrent polynomial programs…

ℤ[X1, ⋯, Xn]
ωn + 1

| |Spec(ℤ[X1, ⋯, Xn]) | | ≤ ωn

Spec(ℤ[X1, ⋯, Xn])

| |X × Y | | = | |X | | ⊗ | |Y | |



The stature of the state space of concurrent polynomial programs

❖  programs, each on  variables 
 queues, on  letters

❖ Stature of state space ≤ 
                 
             = 

❖ Note that the contribution of the polynomial programs ( ) 
          is much lower than the contribution of the queues ( )

❖ What is the actual complexity of verifying concurrent polynomial programs?

m n
p k ≥ 1

(ωn)m ⊗ (ωωk−1)p

ωnm⊕ωk−1.p

nm
ωk−1 . p



Our findings on statures so far
❖ We have already obtained statures of 

quite a few Noetherian constructions

❖ We retrieve the known formulae 
from wqo theory, which extend properly

❖ and new formulae for non-wqo 
                                        Noetherian spaces

❖ A related notion: sobrification ranks 

❖ Missing: finite trees, notably 
(see Schmidt 1979 for the wqo case)

❖ Application to actual complexity upper bounds?

|Xs |

statures sobrification ranks

X ||X||
finite T0 card X

ordinal α (Alex.) α

Y+Z ||Y||⊕||Z||

Y+lexZ ||Y||+||Z||

Y⊥ 1+||Y||

Y×Z ||Y||⊗||Z||

fin. words Y* ω^{ω||Y||±1}

multisets Y⍟ ωᾶ  [||Y||=α]

X ||X||
finite T0 card X

ordinal α (Alex.) α

Y+Z ||Y||⊕||Z||

Y+lexZ ||Y||+||Z||

Y⊥ 1+||Y||

Y×Z ||Y||⊗||Z||

fin. words Y* ω^{ω||Y||±1}

multisets Y⍟ ωᾶ  [||Y||=α]

ordinal α (Scott) α / α–1

cofinite topology min (card Y, ω)

HY, ℙY 1+||Y||…ω||Y||

words, prefix top. ω^{ωβ+1} 
[||Y||=ω^{ωβ+…} + …]

Y<α ≤ ω^{ω(||Y||+α)±1}

X ||X|| sob X
finite T0 card X ≤ card X

ordinal α (Alex.) α α / α+1

Y+Z ||Y||⊕||Z|| max(sob Y, sob Z)

Y+lexZ ||Y||+||Z|| sob Y+sob Z

Y⊥ 1+||Y|| 1+sob Y

Y×Z ||Y||⊗||Z|| (sob Y⊕sob Z)–1

fin. words Y* ω^{ω||Y||±1} ω||Y||±1

multisets Y⍟ ωᾶ  [||Y||=α] ω.||Y||+1…||Y||⊗ω+1

ordinal α (Scott) α / α–1 α / α+1

cofinite topology min (card Y, ω) 1 / 2

HY, ℙY 1+||Y||…ω||Y|| ||Y||+1

words, prefix top. ω^{ωβ+1} 
[||Y||=ω^{ωβ+…} + …]

ωα+1+1 
[||Y||–1=ωα+…]

Y<α ≤ ω^{ω(||Y||+α)±1} ≤ ω(||Y||+α)±1

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces.  Submitted, 2022. 
https://arxiv.org/abs/2112.06828

Bottom row from JGL, S. Halfon, and A. Lopez, Infinitary Noetherian Constructions II. 
Transfinite Words and the Regular Subword Topology.  Submitted, 2022. 

https://arxiv.org/abs/2202.05047

https://arxiv.org/abs/2112.06828
https://arxiv.org/abs/2202.05047


Conclusion



Conclusion, research directions

❖ A rich theory extending wqos into the topological: Noetherian spaces

❖ Old results extend, new results pop up (powersets, spectra, infinite words)

❖ Ordinal analysis: the stature =ordinal rank of top element of  
                                     as an analogue of maximal order types

❖ Still in its infancy

| |X | | ℋX


