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Outline

* Wqgos, WSTS... your five minutes of comfort
* Extending classical theorems from wqos to Noetherian spaces
“ Sobrifications of Noetherian spaces, and their representations

“ Statures of Noetherian spaces and maximal order types of wqos



Wqos and WSTS



Well-quasi-orders

K,

=

*Fact. The following are equivalent for a quasi-ordering <: a2
(1) Every sequence (x,), .y is good: x,, < x, for some m < n —= 4
(2) Every sequence (x,), -y is perfect: has a monotone subsequence =
(3) < is well-founded and has no infinite antichain.

forbidden

(4) Every upwards-closed subset > | forbidden
is the upwards-closure 1 {x, -, x,} i
of a finite set L

(5) Every monotonic chainU; C U, C --- C U, C - i
of upwards-closed subsets is stationary T

(i.e., all the sets U, are equal from some rank on)

*Defn. Such a quasi-ordering < is
called a well-quasi-order (wqo).



Examples

N, with its usual ordering — More generally, any total well-founded order
Every finite set, with any quasi-ordering

Finite disjoint sums, finite products of wqos are wqo

Images of wqos by monotonic maps are wqo (in particular quotients)

Inverse images of wqos by order-reflecting maps are wqo (in particular subsets)

Higman’s Lemma. Let X* = {finite words over alphabet X}
ordered by word embedding <.. Then X wqo < X* wqo

Kruskal’s Theorem. Let 9 (X) = {finite trees with X-labeled vertices}
ordered by homeomorphic tree embedding <,. Then X wqo < J (X) wqo.

And so on. 5



Well-structured transition systems

(Abdulla,Cerans,Jonssoné&Tsay 2000,
Finkel&Schnoebelen 2001)

* A very interesting class of (infinite) transition systems
where coverability (a special form of reachability) is decidable

*Definition. A well-structured transition system (WSTS) is

a transition system (X, — ) S -y
with awqo <on X y
satisfying (strong) monotonicity: v
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Petri nets s Lossy channel systems

CgH120

3
channel ¢;
2 DG 6 8 HT cila
5 L C2
G3P 6 6 N\ blc
1
2 c2?d
T ) OH~
e— —_
Pi  NADP* ADP

... and many other examples | letters can spontaneously vanish from communication queues
(needed for decidability... and rather realistic)
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Coverability i1s decidable

*Definition. A well-structured transition system (WSTS) is

* Effective WSTSs: a transition system (X, — ) .
: with awqo <on X 5 =
e p()lnts are representable satisfying (strong) monotonicity: . =

— < 1s decidable

— vy {x, -, x,} =Pre( T y)is computable (so one can compute Pre(U))

* Theorem. (Abdulla et al. 2000, Finkel&Schnoebelen 2001.)
Coverability is decidable on effective WSTSs.

fun pre* U =
let V = pre U
in
if VCU
then U
else pre* (U U V)
end;

fun coverability (s, B)
S 1n pre* (B);

T



Beyond wqos: Noetherian spaces



Going topological

+ Every quasi-ordered set (X, < ) gives rise to a topological space,
whose open sets are the upwards-closed sets
(the Alexandroff topology) X is wqo iff

(5) Every monotonic chain Uy C U, C - C U, C -
of upwards-closed subsets is stationary

* Definition. A topological space is Noetherian
iff every monotonic chain U, C U, C --- C U, C -

of open subsets is stationary.

« Proposition. (X, <) is wqo
iff X is Noetherian
in its Alexandroft topology.

* Hence Noetherian spaces generalize wqos



+ Yes. Consider N

Is the generalization proper?

cof, the set of natural numbers with the cofinite topology,

whose closed sets are the finite subsets (plus N)
X is Noetherian iff:

+ [t mav be easier to see that N . .ris Noetherian  (5)Every monotonic chain U; C U, C ---
cof y 1 2

of open subsets is stationary

by realizing that:

« Proposition. A space X is Noetherian iff
every antitonic chain F;, D F, D --- D F, D --- of closed subsets

is stationary.

(Take complements.)

* Noof does not arise from a wqo, because its specialization ordering is =,
which is never wqo on an infinite set

IN

IN



Properties T and W

+ Let (X, £ ) be a quasi-ordered set.
[ts finitary subsets are | {x, -, x,}

* The finitary subsets generate the upper topology
It, too, has < as specialization quasi-ordering

v

% PI'OPOSitiOII. If: The upper topology is the coarsest topology
. with < as specialization
— X is well-founded The Alexandroff topology is the finest.

— (Property T) X is finitary

— (Property W) Forallx,y € X, | xn | yis finitary X~

then X is Noetherian in the upper topology This turns out to be the general form
and the closed sets are the finitary subsets. of all sober Noetherian spaces.




Well-founded trees

* Proposition. If:

* Every well-founded tree — X is well-founded
5 : — (Property T) X is finitary
(even nOt ﬁnltely br anChlng ) — (Property W) For allx,y € X, | xn | yis finitary

iS Noetherian in the upper tOpOlOgy } then X is Noetherian in the upper topology

EEEE——

o

« (Property T) X = | {ry}

« (Property W) | xN | yisemptyorequalto | xor |y

“ Not wqo unless tree is finitely branching
(infinite antichains)

* Closed sets = finite disjoint unions of subtrees



T'he Hoare hyperspace of a Noetherian space

“ Proposition. If:

* BEvery well-founded inf-semilattice iS = _ s weli-founded
. : — (Property T) X is finitary
Noetherian in the upper topology _ (Property W) Forall .y € X, | x | yis finitary

then X is Noetherian in the upper topology

+ Let ZX = {closed subsets of X}
with the upper topology of C

(Hoare hyperspace of X ) of open subsets is stationary
(6) Every antitonic chain F;, 2 F, 2 -+ D F, D ---

of closed subsets is stationary
| (7) Z X is well-founded.

X is Noetherian iff:

« A (X) is an inf-semilattice, hence:
Proposition. If X is Noetherian, then #Z X is Noetherian.

(That is actually an equivalence.)

(5) Every monotonic chain U; C U, C --- C U,  C -+



Finite words

« Let X* = {finite words on X} with word topology:

basic open sets (U, -+, U, ) = X*U  X*---X*U X*, where each U, is open in X

* The logical view: words as specific finite structures,

word topology = disjunctive queries (in database parlance)
FzzziiU\i<jU_\T\FvF\F/\F\ di, ' (U open in X)

{ letter at position 1 exists and is in open set U J

« (U, -+, U, ) = {finite words satisfying i, «--,i - i; < - <, Ai; €U, A+ NI, € U}

+ Specialization quasi-ordering is word embedding <. 5

v/

Bl [

« Theorem (JGL 2013). X Noetherian iff X* Noetherian

b

i

Generalizes Higman’s Lemma (Higman 1952): X wqo iff X* wqo

Increase letters



Infinite words

+ Let X=% = {finite or infinite words on X} with asymptotic word topology:
subbasic open sets (U, -+, U ) = X*U X*-- X* UnXsa),
and (U, -+, U ; (00)V) = X*U, X*--- X*U (X*V)* (U, V open in X)

* The logical view: words as specific infinite structures,

Fo—=ic ltilicill | Pl EvEFLEAFEILE
| 3%, G

G:=ieU|li<j|L|T|GVG

* Specialization quasi-ordering is (infinite) word embedding

INncrease letters

+ Theorem (JGL 2021). X Noetherian iff X=? Noetherian Jefe]
No equivalent in wqo theory — except if you adopt bgo theory.



Transtinite words

« Let X~% = {ordinal-indexed words on X of length < a}

* Regular subword topology better described through subbasic closed sets
F<C¥1 o F<C¥n
1 n

where each F; is closed in X and each «; is an ordinal

+ Contains X* = X<? and X=? = X<?*! a5 special cases

“ Theorem (JGL, Halfon, Lopez 2022, submitted).

X Noetherian iff X=* Noetherian
No equivalent in wqo theory — except if you adopt bqo theory...
but specialization quasi-ordering is not word embedding in general.



Topological WSTS



“ So Noetherian spaces go beyond wqos,
but do they have any use?

“ Of course they do: a reminder of where they come from

* An application in verification



T'he origin of Noetherian spaces

+ The spectrum Spec(R) of a ring R is the set of its prime ideals p

* with the Zariski topology, whose closed subsets are
{p € Spec(R) | I C p}, where I ranges over the ideals of R

+ Fact. The spectr um of a Noetherian r ll’lg (every monotone chain of ideals is stationary)
is Noetherian.

« In particular if R = K[Xj, -+, X ] for some Noetherian ring, e.g., Z

“ One can compute with ideals, represented by Grobner bases
(Buchberger 1976)



An application of Grobner bases in verification

“ Verification of polynomial programs if (*) { x=2; y=3; }
= : else { x=3; y=2; }
(Miiller-Olm&Seidl 2002) X = xhy-63 yo0;
: 1f (x2-3*x*y==0)
+ Propagates ideals of Z| X, ---, X | while (*) { x=x+1; y=y-1;
. K s = x24x*kvye
backwards, as in the Pre algorithm c T

(X, ..., X = variables of the program)

« Terminates because every monotonic chain S e €0 &
of ideals is stationary

+ ... very similar to Pre” on WSTS, but
the (infinite) transition system underlying a polynomial program
is not a WSTS (inclusion between ideals not a wqo)



Topological WSTS

(JGL 2011)

Definition. A topological WSTS is a transition system (X, — )
with a Noetherian topology < on X
satisfying lower semicontinuity:
for every open subset U, Pre(U) is open

Namely, replace wqo by Noetherian
monotonicity by lower semicontinuity B Ty
If the topology is Alexandroff, then Noetherian=wqo, B "y

lower semicontinuity=monotonicity
In particular, every WSTS is a topological WSTS

Polynomial programs are topological WSTS
— in the Zariski topology of Spec(Z[X;, -+, X, ])

21



Topological coverability 1s decidable

. °q + Definition. A topological WSTS is a transition system (X, — )
< .
TOPOIOglcal CoverabllltY‘ with a Noetherian topology < on X

INPUT: an initial configuration x,, satisfying lower semicontinuily: .
. . or every open subset U, Pre(U) is open
an open set U of bad configurations
QUESTION: is there a x € U such that x, —* x?

* An effective topological WSTS is one where:
— open sets are representable
— C is decidable on open sets

fun pre* U =

— U — Pre(U) is computable let v = pre U
* Theorem (JGL 2011.) Topological coverability is decidable ;Sgﬁgiegj —
on effective topological WSTSs. end;

fun coverability (s, B) =

* The algorithm is the same as with WSTSs. s in pre* (B);

T

22



Concurrent polynomial programs

(JGL 2011)
2 F t t k f while (*) { a = % b*ZO;
INnite Networks O recv (SIG_CALC) = if (¥) { x =2,y =3; } while (*) {
else {x=3;y=2;} channel ¢; - recv (SIG_FUZZ) = send (SIG_CALC);
1 x=x%xy—6;y=0; — a alc — b="b+1;
polynomial programs ORI ol et (amatl)
P P whil(ei ((*) {x= x)+ Ly=y—1; } channel ¢, | E:S?Ga;Uz;T) e
else send (SIG_FUZZ); -— c -— recv _ return;
1, . m X = x% + X *; : }

communicating through y e S e A
lossy communication -
queues on a finite alphabet X

letters can spontaneously vanish
from communication queues
(needed for decidability... and rather realistic)

* State space = finite product of
— spectra of polynomial rings Z[ X/, :--, X ], one for each P,

— 2 *, with word topology, one for each communication queue
This is Noetherian, because:

* Proposition. Any finite product of Noetherian spaces is Noetherian.
23




Concurrent polynomial programs

(JGL 2011)
while (* a=* b=0;
o Those are RS (SIG_CALC) = if (*) {x =2y =3; } nite () {
. ) | eise. {x=3,y=2;} channel ¢ - recv I(DSEGI;I:EJ?Z) = send (SIG_CALC);
topological WSTSs ORI I ~ _[eplalale[ —~ (e db) (aaili)

3 while (*) {x=x+1,y=y—1; }; channel ¢, C = ax*b;
(lossiness necessary) S50 sond (S16-FUZ2) Dl =y e ST S weums
Hence: \ | recv (SIG_QUIT) = return; A

* Theorem (]GL 2011 ) le’;ters can spont.aniz.ously vanish
. S e . . rom communication queues
TOPOIOglcal cover ablhty is decidable (needed for decidability... and rather realistic)

for concurrent polynomial programs.

*You still have to prove effectivity.
For that, you need to find a representation for open sets.
But open sets are no longer of the form 1 {x, -, x,}

24



Representations, sobrifications



Representing open sets: the trick

+ Embed state space X into its sobrification X*

Oops, I have not said what that was,
have I?

26



Sober spaces and sobrifications

+ A closed set FF € # X is irreducible iff
forall Fy, -, F, € #X,FC | | F;= 3i,FCF,

+Every set | xisirreducible closed
X is sober iff Ty
and those are the only irreducible closed sets

+ The sobrification X° = {F € #Z'X | F irreducible}, \

seen as subspace of Z X is always sober,
and X embeds into X° through x — | x

E.g., Z'X, Spec(R),
but not N_,¢ X* for example

+ X and X* have isomorphic lattices of open subsets——— In particular,
X Noetherian iff X* Noetherian

27




Representing open sets: the trick

+ Embed state space X into its sobrification X”
* Both have isomorphic lattices of open sets

+ Represent open sets U by their complements:
closed sets C

*Now:
In a sober Noetherian space, every closed set C

is a finitary subset | {x, -, x }.

+* Hence we can represent U by

(the complement of the downward closure in X*)

of finitely many points... in X’

\)
X~ X

X1

W

Reminder

Proposition. If:

— X is well-founded

— (Property T) X is finitary

— (Property W) For allx,y € X, | xN | yis finitary
then X is Noetherian in the upper topology

and %e closed sets are exactly the finitary subse

This turns out to be the general form
of all sober Noetherian spaces.




Representing points in sobrifications

XS

+ For a finite set 2, with the discrete topology,
- =

*Products: ( X X Y)Y =X X Y*

\[ Y ‘
& SpeC(Z[Xl, coe, Xn]) already Sober, ( 4

points = prime ideals, represented as Grobner bases

+ (X*)’ consists of word products % Embedding X* — (X*)':
Other word products, ﬁ ‘ C?P ‘ F*P abc — (1l a)(lb)(lc)
=5 . J = A : \)
CICIF*CIFHF* Wi EX = O U= D0AE e

+ All those are representable on a computer (Finkel, JGL 2009, 2021)

29



Statures of Noetherian spaces



* Maximal order types of well-partial-orderings
“ Statures of Noetherian spaces as generalization of maximal order types

“ ... we are not really changing the subject,
and we will use the representations of points in X* again



Maximal order types

* A well-partial-ordering is a well-quasi-ordering that is antisymmetric

* Theorem (Wolk 1967). A wpo is a partial ordering whose linear extensions
are all well-founded
Note: every linear well-founded ordering is isomorphic to a unique ordinal,
... its order type

“ Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.

* Any meaningful equivalent of that notion for Noetherian spaces?
But first, why should we bother about maximal order types anyway?



Why bother about maximal order types?

“ First studied by de Jongh and Parikh (1977)
then Schmidt (1979)

* Many applications in proof theory (reverse mathematics):
Simpson (1985), after Friedman
van den Meeren, Rathjen, Weiermann (2014, 2015)

etc.

* Ordinal complexity of the size-change principle for proving
the termination of programs and rewrite systems

Blass and Gurevich (2008)

+ and...



Why bother about maximal order types?

* Figueira, Figueira, Schmitz and Schnoebelen (2011),

Schmitz and Schnoebelen (2011)

obtain complexity upper bounds
for algorithms whose termination
is based upon wqgo arguments

(and others)

Theorem 5.3 (Main Theorem).
Let ¢ be a smooth control function

eventually bounded by a function in &,

and let A be an exponential nwgo

(e.g., coverability)

* E.g., coverability

length function

(complexity upper bound)

in lossy channel systems
is F_.-complete.

(way larger than Ackermann)

with maximal order type < wlt

——Then L, , is bounded by a tunction in:

« Fyity < w(e.g., if g is primitive recursive) and f > @

“’/\9‘7#/3 ify>2and f < w.

class of functions

(fast-growing hierarchy)

From S. Schmitz, Ph. Schnoebelen, Multiply-recursive

e]ementary recursive in F B upper bounds with Higman's Lemma. ICALP 2011.




Going topological

“ Let us return to the question of finding a Noetherian analogue
of maximal order types



A wrong idea: minimal Ty topologies

* Partial ordering ~ Ty topology
Extension ~ coarser Ty topology
Linear extension = maximal extension ~ minimal Ty topology

« Studied by Larson (1969).
A minimal Ty topology is necessarily the upper topology of a linear ordering.

* Unfortunately, minimal Ty topologies do not exist in general:
Fact. R_,¢is Noetherian, but has no coarser minimal Ty topology.

(Its uncountably many proper closed subsets would all have to be finite, and linearly ordered.)




+ Theorem (K¥iZ 1997, Blass and Gurevich 2008).

Statures of wpos

The stature of X

Maximal order type of a wpo (X, <)

= ordinal rank || X| | of the top element X
in the poset (DX, C ) of downwards-closed subsets of X

* Ordinal rank inductively defined by:

[|F|| =sup{||F'||+ 1| F' € 9X,F C F) rank 3

& Example; X = {0,1,2}, rank 2
: >0 >0

ordered by equality e rank 1

maximal order type=3 % FisleD



Statures of Noetherian spaces

« Definition. The stature of a Noetherian space X is
the ordinal rank || X || of the top element X
in the poset (Z'X, C ) of closed subsets of X

[E| | =supl | |[F||+1 | FeZX,FGF]

* Matches previous definition: X is Noetherian iff
AT (6) Every antitonic chain F; D F, 2 -+ D F, D ---
for a wqo in its Alexandroff topology, of closed subsets is stationary

(7) # X is well-founded.
closed = downwards-closed S

HAX=DX




T'he stature of a finite space

« For a finite To space X, | | X|| = card X
... a finite TO space is just a finite poset, so that was known already

rank 3

rank 2

rank 1

%) rank 0




The stature of X *

+ Theorem (JGL, Laboureix 2022). IfX #* @ is Noetherian and a = | | X | |,
then || X*|| = @®"

(+1if o = eg+n, -lifa finite)
+ Not very surprising: already known when X wqo (Schmidt 1979)

“ The proof is very different, and is localic.
Explicitly, we do not reason on points (words),
but on closed sets = finite unions of word products
(X*)* consists of word products

P:=¢|C'P| F*P
withCe X5, F=C,U--UC, (C; € X*)




gt

An excerpt from the proofof | | X*|| > o

« For a well-founded poset P, let Step(P) = {(p,q) | p < g},
strictly ordered by (p,q) < (p’,q) itt g < p’
Lemma. The ordinal height of Step(P) is that of P minus 1.

(convention: for a non-successor ordinal f, f — 1 = )

« Given F € Z'Xand C € X’ suchthat C € F, (F, F U C) € Step(# X)

+ Map (B, B*) € Step(#(F¥)), A € d,, to (F*C"Y""'BUAC ?B+AU C.ii

« This is strictly monotonic : Step(# (F*)) X,,. A, = A,

A finite union
of word products




gt

An excerpt from the proofof | | X*|| > o

« There is a strictly monotonic map: Step(# (F*)) X,,. A, = A, .,

# The ordinal height of Qﬁf s L b ] a
Hence if || F*|| > @® then ||C, ;|| = ®® et

so | [(FUC)*|| > 0" by taking suprema over n € N
« This is the key step in a well-founded induction on F' € Z'X

o IFII]

showing || F*|| > w

« Finally, let F' = X; by definition, || X|| = a.




T'he stature of Z[ X, -+, X |

# The ordinal height of the lattice of ideals of Z[ X, :--, X ]
is " + 1 (Aschenbrenner, Pong 2004)

+ Hence ‘ | SpeC(Z [Xl TN Xn]) ‘ ‘ < " (and I conjecture equality—not checked out of laziness)

“ Only indirectly related to wqos (through leading monomials)
but remember that Spec(Z[X;, -+, X ]) is not itself wqo.

+ Together with || XX Y|| =||X||®||Y]|]  (GL, Laboureix 2022)

extending the same formula on wqos (de Jongh, Parikh 1977),
we obtain the stature of the state space of concurrent polynomial programs...



T'he stature of the state space of concurrent polynomial programs

« m programs, each on n variables Concurrent polynomial programs
(JGL 2011)
p queue S, On k Z 1 letters e Flnlte networks Of i (?et{:v (SIG_CALC) = if (*){{ x=32; y=3;} } oy ?*)={o; ( ) it ;
else { x=3;y=2; A . recv (SIG_FUZZ) = send (SIG_CALC);
polynomial programs O o BRERREL - G L}
P P I i S S < M
1z »**7 £ m x=x2+x*y; ’ = }
* Stature of state space < communicating through = A
k—1 lOSSY communication T ( letters can spontaneously vanish
o . y ¥
( 0, n)m ® ( 0, @ )p queues on a finite alphabet e e
(needed for decidability... and rather realistic)

nmep a)k— 1 P * State space = finite product of e
— — spectra of polynomial rings Z[X;, --+,X ], one for each P,
— X*, with word topology, one for each communication queue

+ Note that the contribution of the polynomial programs (nm)

k—1

is much lower than the contribution of the queues (0" " . p)

* What is the actual complexity of verifying concurrent polynomial programs?



statures sobrification ranks

Our findings on statures so far e

| I X] ] sob X

finite Ty card X < card X
* We have already obtained statures of ordinal o (Alex.) i a / a1
¢ ; . EREARICIRVAN b Y, sob Z
quite a few Noetherian constructions e Bl e
Y +Hex”Z. Y1 T+11Z]] sob Y+sob Z
+ We retrieve the known formulae Y, 141 1Y | 1+s0b Y
from wqo theory, which extend properly RL et SR iR
fin. words Y* wM! Y1141} ! 1Y+
+ and new formulae for non-wdqo multisets Y® w [11Y]1=a] w. 1Y 141 11Y] |®@w+1
Noetherian spaces ordinal a (Scott) a / a-1 a / a+l
cofinite topology min (card Y, w) 1/2
= A related notion: sobrification ranks | X" | 7Y, PY L+ Y] ]! 1Y AGRES
. o . . d ﬁ t w/\{wf:i+1} wa+l_|_]_
« Missing: finite trees, notably R S [ |Y | =Moo+, 4. [I1Y]—T=qat..]

(see Schmidt 1979 for the wqo case) Y<a < Mookl Y1 101 < coll 1Y 14t

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022.
https://arxiv.orqg/abs/2112.06828

Application tO aCtual CompleXity upper boundS? Bottom row from JGL, S. Halfon, and A. Lopez, Infinitary Noetherian Constructions II.

Transfinite Words and the Regular Subword Topology. Submitted, 2022.
https://arxiv.orqg/abs/2202.05047

R/
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(Conclusion, research directions

“ A rich theory extending wqos into the topological: Noetherian spaces
“ Old results extend, new results pop up (powersets, spectra, infinite words)

+ QOrdinal analysis: the stature || X||=ordinal rank of top element of Z'X
as an analogue of maximal order types

# Still in its infancy



