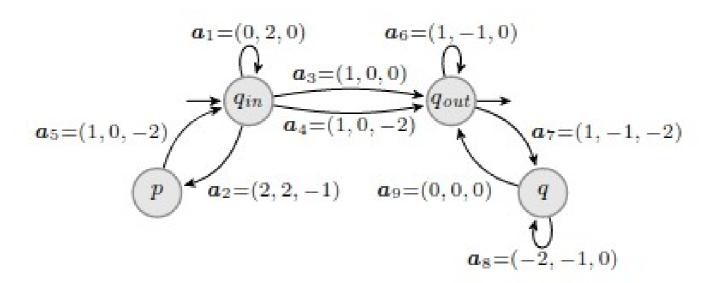
# Largeur du produit cartésien d'ordinaux

Isa Vialard

#### **Motivation**

- WQO → WSTS (Machine à compteurs, VASS)
  - → Vérification de programmes
- Mesure → Complexité



#### **Invariants ordinaux**

suites décroissantes = Hauteur
Arbre des mauvaises suites = Maximal order type antichaines = Largeur

#### **Invariants ordinaux**

suites décroissantes = Hauteur

Arbre des mauvaises suites = Maximal order type

antichaines = Largeur

Intuition par jeu

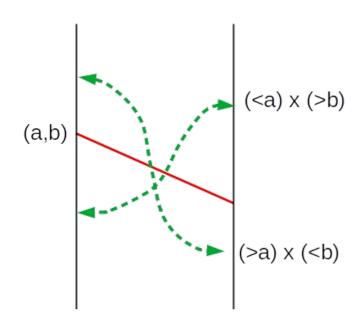


# État de l'art

Table 1: Ordinal invariants of the main WQOs.

| P                          | o(P)                                    | h(P)                         | w(P)                         |
|----------------------------|-----------------------------------------|------------------------------|------------------------------|
| $\alpha$ ordinal           | α                                       | α                            | 1 (or 0)                     |
| $A_n$ (size $n$ antichain) | n                                       | 1                            | n                            |
| №³                         | $\omega^2$                              | $\omega$                     | $\omega$                     |
| $\sum_{i \in \alpha} P_i$  | $\sum_{i \in \alpha} o(P_i)$            | $\sum_{i \in \alpha} h(P_i)$ | $\sup_{i \in \alpha} w(P_i)$ |
| $P \sqcup Q$               | $o(P) \oplus o(Q)$                      | $\max(h(P), h(Q))$           | $w(P) \oplus w(Q)$           |
| $P \cdot Q$                | $o(P) \cdot o(Q)$                       | $h(P) \cdot h(Q)$            | $w(P) \odot w(Q)$            |
| $P \times Q$               | $o(P) \otimes o(Q)$                     | h(P) + h(Q)                  | ?                            |
| M(P)                       | $\omega^{\widehat{o(P)}}$               | $h^*(P)$                     | ?                            |
| $P^{<\omega}$              | $\omega^{\omega^{o(P)\pm 1}}$           | $h^*(P)$                     | $o(P^{<\omega})$             |
| T(P)                       | $\vartheta(\Omega^{\omega} \cdot o(P))$ | $h^*(P)$                     | o(T(P))                      |

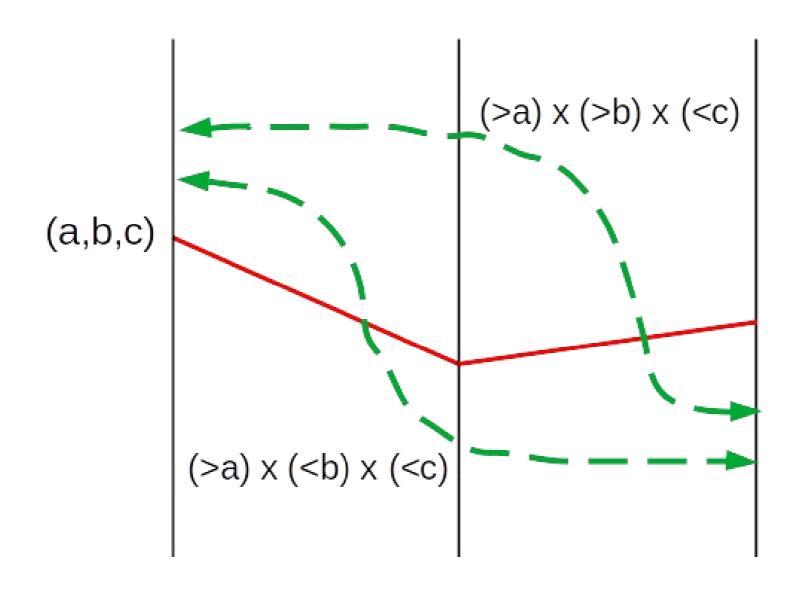
#### Produit cartésien de 2 ordinaux



 Uri Abraham, 1987, A note on Dilworth theorem in the infinite case

$$\boldsymbol{w}(\omega\alpha\times\omega\beta) = \omega\omega^{\alpha'\oplus\beta'}\cdot(a+b-1) + [\boldsymbol{w}(\omega\omega^{\alpha'}\times\omega\sigma)\oplus\boldsymbol{w}(\omega\omega^{\beta'}\times\omega\rho)] \ .$$

#### Produit de 3 ordinaux?

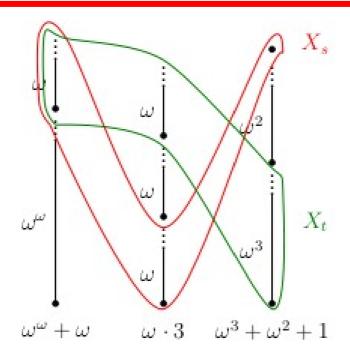


#### Produit cartésien de *n* ordinaux

 On décompose un produit d'ordinaux X en tranches X<sub>s</sub>.

Théorème

$$w(X) = \bigoplus_{s \in Gr(X)} w(X_s)$$
.



## **Application**

Une condition suffisante pour o(X)=w(X)

#### Théorème.

Soit  $X = X_1 \times \cdots \times X_n$ . S'il existe  $i \neq j$  tels que  $\mathbf{o}(X_i)$ ,  $\mathbf{o}(X_j)$  sont de la forme  $\omega^{\alpha}$ ,  $\omega^{\beta}$  avec  $\alpha$ ,  $\beta$  infinis, alors  $\mathbf{w}(X) = \mathbf{o}(X)$ .

#### Preuve:

$$w(o(X_1) \times \cdots \times o(X_n)) \leq w(X) \leq o(X)$$

## Wqos élémentaires

 $A, B := \emptyset \mid A \sqcup B \mid A \times B \mid A^* \mid M^{\diamond}(A) \mid (coming \ soon \ P_f(A))$ 

| X                 | o(X)                          | $\boldsymbol{h}(X)$                          | $\boldsymbol{w}(X)$                                                                                                                                                                                                                                       |
|-------------------|-------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A \sqcup B$      | $o(A) \oplus o(B)$            | $\max(\boldsymbol{h}(A), \boldsymbol{h}(B))$ | ${m w}(A) \oplus {m w}(B)$                                                                                                                                                                                                                                |
| $A\times B$       | $o(A) \otimes o(B)$           | $\boldsymbol{h}(A) + \boldsymbol{h}(B)$      | New!                                                                                                                                                                                                                                                      |
| $M^{\diamond}(A)$ | $\widehat{\omega^{o(A)}}$     | $m{h}^*(A)$                                  | $\begin{cases} \boldsymbol{o}(M^{\diamond}(A)) \text{ if } \boldsymbol{o}(A) \text{ is infinite,} \\ \omega^{k-1} \text{ if } \boldsymbol{o}(A) = k \\ \begin{cases} \boldsymbol{o}(A^*) \text{ if } \boldsymbol{o}(A) > 1 \\ \text{else } 1 \end{cases}$ |
| $A^*$             | $\omega^{\omega^{o(X)\pm 1}}$ | $\boldsymbol{h}^*(A)$                        | $\begin{cases} \boldsymbol{o}(A^*) & \text{if } \boldsymbol{o}(A) > 1 \\ \text{else } 1 \end{cases}$                                                                                                                                                      |

# Conclusion