
TAO-WSTS	:	Theory,	algorithms	
and	tools	for	WSTS	

Alain	FINKEL	
BRAVAS	26	octobre	2017	

TAO-WSTS	

1.  Theory	for	WSTS	

2.  Algorithms	for	WSTS	

3.  Tools	for	WSTS	

Theory,	algorithms	and	tools	for	WSTS	

•  WSTS	are	monotone	TS	+	a	well-founded	ordering	but	without	infinite	anOchains	

•  Increasingly	used	to	verify	web	protocols,	cache	management	protocols,	
mulOthreaded	programs,	...		

•  But	most	of	the	algorithms	used	to	check	templates	are	those	designed	15	-	20	
years.		

•  However,	for	the	last	ten	years	or	so,	the	theory	of	WSTS	has	undergone	a	major	
revival,	notably	with	the	theory	of	ideals	and	the	possibility	of	finite,	and	effecOve,	
representaOon	of	downward	closed	sets.	

New	forward	coverability	algorithm	
with	ideals	enumeraOon	

WELL BEHAVED TRANSITION SYSTEMS 11

Procedure 1: searches for a coverability certificate of y from x

1 D #x
2 while y 62 D do
3 D D [#Post(D)
4 return true

Procedure 2: enumerates inductive invariants to find non coverability certificate of
y from x.

1 i 0
2 while ¬(#Post(D

i

) ✓ D

i

and x 2 D

i

and y 62 D

i

) do
3 i i+ 1
4 return false

The second procedure enumerates inductive invariants in some fixed order D1, D2, . . . ,
i.e. downward closed subsets D

i

✓ X such that #Post(D
i

) ✓ D

i

. Any inductive invariant
D

i

such that x 2 D

i

and y 62 D

i

is a certificate of non coverability. This is due to the
fact that every inductive invariant D

i

is an “over-approximation” of Post⇤(x) if it contains
x. Moreover, by standard monotonicity, #Post⇤(x) is such an inductive invariant and may
eventually be found.

We show that these two procedures are correct:

Theorem 4.1. Let S = (X,�!,) be a WBTS, and let x, y 2 X.

(1) y is coverable from x if, and only if, Procedure 1 terminates.
(2) y is not coverable from x if, and only if, Procedure 2 terminates.

Proof.

(1) Procedure 1 computes

D =
[

k=0

#Post(· · · #Post(#x))| {z }
k times

.

It su�ces to show that D = #Post⇤(x), since y is coverable from x if, and only if,
y 2 #Post⇤(x).

The inclusion #Post⇤(x) ✓ D is immediate. Let us prove that D ✓ #Post⇤(x).
Let z 2 D. There exist k 2 N and x0, x

0
0, x1, x

0
1, . . . , xk, x

0
k

such that x0 = x, x0
k

= z,
x

i

� x

0
i

for every 0  i  k, and x

0
i

�! x

i+1 for every 0  i < k. By applying
monotonicity k times, we obtain x �!⇤

z

0 for some z

0 � z. Thus, z 2 #Post⇤(x),
whence D ✓ #Post⇤(x).

(2) By a simple induction, it can be shown that #Post⇤(D) ✓ D for every inductive
invariant D. If Procedure 2 terminates, then y 62 D ◆ #Post⇤(D) ◆ #Post⇤(x)
which implies that y is not coverable from x.

It remains to show that Procedure 2 terminates whenever y is not coverable
from x. To do so, it su�ces to prove that #Post⇤(x) is an inductive invariant.
Indeed, this implies that #Post⇤(x) is eventually found by Procedure 2 when y is
not coverable from x. Formally, let us show that #Post(#Post⇤(x)) ✓ #Post⇤(x).
Let b 2 #Post(#Post⇤(x)), there exists a0, a, b0 such that x �!⇤

a

0, a0 � a, a �! b

0 and

LTL	model	checking	for	very	WSTS	

•  DefiniOon.	A	very-WSTS	is	a	labeled	WSTS							
	 	S	=	(X,−>,≤)	such	that:	
– S	has	strong	monotonicity	
– C(S)	is	a	determinisOc	WSTS	with	strong-strict	
monotonicity	

–  Idl(X)	has	finitely	many	levels	

AcceleraOon	levels	
16:6 Forward Analysis for WSTS, Part III: Karp-Miller Trees

3.2 Levels of ideals
The Karp-Miller algorithm terminates for the following reasons: Nd

Ê

is well-quasi-ordered
and Ê’s can only be added to vectors along a branch at most d times. Loosely speaking,
the latter property means that Idl(Nd) has d + 1 “levels”. Here, we generalize this notion.
We say that an infinite sequence of ideals I

0

, I

1

, . . . œ Idl(X) is an acceleration candidate if
I

0

µ I

1

µ · · · .

I Definition 4. For every n œ N, the n

th level of Idl(X) is defined as

Acc
n

(X) =
I

Idl(X) if n = 0,
)t

iœN I

i

: I

0

, I

1

, . . . œ Acc
n≠1

(X) is an acceleration candidate
*

if n > 0.

We observe that Acc
n+1

(X) ™ Acc
n

(X) for every n œ N. Moreover, as expected:

Acc
n

(Nd) = {I œ Idl(Nd) : Ê-rep(I) has at least n occurrences of Ê}.

We say that Idl(X) has finitely many levels if there exists n œ N such that Acc
n

(X) = ÿ. For
example, Acc

d+1

(Nd) = ÿ.

3.3 Accelerations
The last key aspect of the Karp-Miller algorithm is the possibility to accelerate nodes. In
order to generalize this notion, let us briefly develop some intuition. Recall that a newly added
node c : x is accelerated if it has an ancestor c

Õ : x

Õ such that x > x

Õ. Consider the non-empty
sequence w labeling the path from c

Õ to c. Since d-VAS have strong-strict monotonicity, both
over Nd and Nd

Ê

, w

n(x) is defined for every n œ N. For example, if (5, 0, 1) w≠æ (5, 1, 3) is
encountered, (5, 1, 3) is replaced by (5, Ê, Ê). This represents the fact that for every n œ N,
there exists some reachable marking y Ø (5, n, n). Note that an acceleration increases the
number of occurrences of Ê. In our example, the ideal I = ¿ 5 ◊ ¿ 1 ◊ ¿ 3, which is of level 0,
is replaced by I

Õ = ¿ 5 ◊ N ◊ N, which is of level 2. Based on these observations, we extend
the notion of acceleration to completions:

I Definition 5. Let S = (X,

�≠æ, Æ) be a WSTS such that ‚S is deterministic and has
strong-strict monotonicity, let w œ �+ and let I œ Idl(X). The acceleration of I under w is
defined as:

w

Œ(I) def=
It

kœN w

k(I) if I µ w(I),
I otherwise.

Note that for every ideal I, w

Œ(I) is also an ideal. As for Idl(Nd), any successor J of an
ideal I belongs to the same level of I, and accelerating an ideal increases its level.

I Proposition 6. Let S = (X,

�≠æ, Æ) be a WSTS such that S has strong monotonicity, and
‚S is deterministic and has strong-strict monotonicity. For every I œ Idl(X) and w œ �+,

1. if Post‚S (I, w) ”= ÿ and I œ Acc
n

(X) for some n œ N, then w(I) œ Acc
n

(X);
2. if I µ w(I) and I œ Acc

n

(X) for some n œ N, then w

Œ(I) œ Acc
n+1

(X).

4 The Ideal Karp-Miller algorithm

We may now present our generalization of the Karp-Miller algorithm. To do so, we first
define the class of WSTS that enjoys all of the properties introduced in the previous section:

Ideal	Karp-Miller	algorithm	

M. Blondin and A. Finkel and J. Goubault-Larrecq 16:7

I Definition 7. A very-WSTS is a labeled WSTS S = (X,

�≠æ, Æ) such that:
S has strong monotonicity,
‚S is a deterministic WSTS with strong-strict monotonicity,
Idl(X) has finitely many levels.

The class of very-WSTS includes vector addition systems, Petri nets, Ê-Petri nets [25],
post-self-modifying nets [41] and strongly increasing Ê-recursive nets [21]. However, very-
WSTS do not include transfer Petri nets, since ‚

S does not have strict monotonicity, and
unordered data Petri nets, since Idl(X) has infinitely many levels. Note that ‚S may be
deterministic (and finitely branching) even when S is not, and even when S is not finitely
branching, as the example of Ê-Petri nets shows.

We present the Ideal Karp-Miller algorithm (IKM) for this class in Algorithm 4.1. The
algorithm starts from an ideal I

0

, successively computes its successors in ‚S and performs
accelerations as in the classical Karp-Miller algorithm for VAS. Note that we do not allow
for nested accelerations. For every node c : ÈI, nÍ of the tree built by the algorithm, we write
ideal(c) for I, and num-accel(c) for n, which will be the number of accelerations made along
the branch from the root to c (inclusively). Let us first show that the algorithm terminates.

Algorithm 4.1: Ideal Karp-Miller algorithm.
1 initialize a tree T with root r : ÈI

0

, 0Í
2 while T contains an unmarked node c : ÈI, nÍ do
3 if c has an ancestor c

Õ : ÈI Õ
, n

ÕÍ s.t. I

Õ = I then mark c

4 else
5 if c has an ancestor c

Õ : ÈI Õ
, n

ÕÍ s.t. I

Õ µ I

6 and n

Õ = n /* no acceleration occurred between c

Õ
and c */ then

7 w Ω sequence of labels from c

Õ to c

8 replace c : ÈI, nÍ by c : ÈwŒ(I), n + 1Í
9 for a œ � do

10 if a(I) is defined then
11 add arc labeled by a from c to a new child d : Èa(I), nÍ
12 mark c

13 return T

I Theorem 8. Algorithm 4.1 terminates for very-WSTS.

Proof. We note the following invariants: (1) for every node c : ÈI, nÍ of T , I is in Acc
n

(X);
(2) at line 2, i.e., each time control returns to the beginning of the loop, all unmarked nodes
of T are leaves; (3) num-accel(c) is non-decreasing on each branch of T , that is: for every
branch c

0

: ÈI
0

, n

0

Í, c

1

: ÈI
1

, n

1

Í, . . . , c

k

: ÈI
k

, n

k

Í of T , we have n

1

Æ n

2

Æ · · · Æ n

k

. (1) is
by Proposition 6, (2) is an easy induction on the number of times through the loop, and (3)
is also by induction, noticing that by (2) only n

k

can increase when line 8 is executed.
The rest of the argument is as for the classical Karp-Miller algorithm. Suppose the

algorithm does not terminate. Let T
n

be the finite tree obtained after n iterations. The
infinite sequence T

0

, T
1

, . . . defines a unique infinite tree TŒ =
t

nœN T
n

. Since ‚S is finitely
branching, TŒ is also finitely branching. Therefore, TŒ contains an infinite path c

0

: ÈI
0

, n

0

Í,
c

1

: ÈI
1

, n

1

Í, . . . , c

k

: ÈI
k

, n

k

Í, . . . , by König’s lemma. By (1), and since Idl(X) has finitely
many levels, the numbers n

k

assume only finitely many values. Let N be the largest of those
values. Using (3), there is a k

0

œ N such that n

k

= N for every k Ø k

0

. Since ‚S is a WSTS,

FSTTCS 2017

Theory,	algorithms	and	tools	for	WSTS	

•  WSTS	algorithmicsneed	to	be	be^er	
understood:		

•  there	are	several	algorithms	for	parOcular	
classes	of	models,	but	it	remains	to	
understand	the	principles	of	the	most	efficient	
algorithms	for	WSTS.	

•  Downward-closed	sets…	

Theory,	algorithms	and	tools	for	WSTS	

•  We	will	test	the	efficiency	of	algorithms	with	
prototypes.		

•  We	will	conOnue	the	effort	started	in	2000	
with	the	tool	FAST	and	recently	with	the	tool	
QCOVER	by	aiming	to	make	the	first	prototype	
for	solving	reachability	for	Petri	nets.	

Reachability	algorithm	
•  Reachability	algorithm	(S	:	Petri	net	;	x,y	:	configura<ons)	
•  		
•  BEGIN	
•  IF	y	is	not	reachable	from	x	in	the	associated	conOnuous	Petri	net	OR	in	the	integer	Petri	net	

(without	guards)	
•  THEN		
•  STOP	(write	«	y	is	not	reachable	from	x	»)	
•  ELSE		
•  IF	y	is	not	coverable	from	x	in	S		
•  THEN		
•  	 STOP	(write	«	y	is	not	reachable	from	x	»)	;	
•  ELSE		
•  Use	over-approximaOons	for	solving	non-reachability	:	compute	the	coverability	graph,…	
•  Use	exact	acceleraOons	for	solving	reachability	:	compute	semilinear	subsets	of	the	reachability	set	
•  Use	machine	learning	techniques	(prospecOves)	
•  Use	finally,	a	complex	algorithm	like	the	Leroux	algorithm	with	Presburger	invariants,	the	Mayr-

Kosaraju	algorithm.	
•  END	

