TAO-WSTS : Theory, algorithms
and tools for WSTS



TAO-WSTS

1. Theory for WSTS

2. Algorithms for WSTS

3. Tools for WSTS



Theory, algorithms and tools for WSTS

WSTS are monotone TS + a well-founded ordering but without infinite antichains

Increasingly used to verify web protocols, cache management protocols,
multithreaded programes, ...

But most of the algorithms used to check templates are those designed 15 - 20
years.

However, for the last ten years or so, the theory of WSTS has undergone a major
revival, notably with the theory of ideals and the possibility of finite, and effective,
representation of downward closed sets.



New forward coverability algorithm
with ideals enumeration

Procedure 1: searches for a coverability certificate of y from =z

1D+ ]z
2 while y ¢ D do
3 D + D U | Post(D)

4 return true

Procedure 2: enumerates inductive invariants to find non coverability certificate of
y from x.

11+ 0

2 while —(] Post(D;) C D; and x € D; and y € D;) do
3 14—1+1

4 return false




LTL model checking for very WSTS

* Definition. A very-WSTS is a labeled WSTS
S =(X,—>,<) such that:
— S has strong monotonicity

— C(S) is a deterministic WSTS with strong-strict
monotonicity

— Idl(X) has finitely many levels



Acceleration levels

We say that an infinite sequence of ideals Iy, I1,... € IdI(X) is an acceleration candidate if
IccIlC---.

» Definition 4. For every n € N, the n'" level of 1d1(X) is defined as

Ace, (X) Id1(X) if n =0,
CCp =
{Uien Li : 1o, I1, . .. € Acc,—1(X) is an acceleration candidate} if n > 0.

We observe that Acc,4+1(X) C Acc,(X) for every n € N. Moreover, as expected:
Acc,, (N = {I € IdI(N?) : w-rep(I) has at least n occurrences of w}.

We say that Id1(X) has finitely many levels if there exists n € N such that Acc, (X) = 0. For
example, Accgy1(N?) = 0.



ldeal Karp-Miller algorithm

Algorithm 4.1: Ideal Karp-Miller algorithm.

1 initialize a tree 7 with root r: (I, 0)
2 while 7 contains an unmarked node ¢: (I,n) do

3 if ¢ has an ancestor ¢’: (I’,n’) s.t. I’ =1 then mark c

4 else

5 if ¢ has an ancestor ¢’: (I';)n')y s.t. I' C 1

6 and n’ =n /* no acceleration occurred between ¢ and ¢ */ then
7 w < sequence of labels from ¢’ to ¢

8 replace c: (I,n) by c: (w>(I),n+ 1)

9 for a € ¥ do
10 if a(I) is defined then
11 add arc labeled by a from ¢ to a new child d: {(a(I),n)

12 mark c

13 return 7




Theory, algorithms and tools for WSTS

 WSTS algorithmicsneed to be better
understood:

* there are several algorithms for particular
classes of models, but it remains to
understand the principles of the most efficient
algorithms for WSTS.

e Downward-closed sets...



Theory, algorithms and tools for WSTS

 We will test the efficiency of algorithms with
prototypes.

 We will continue the effort started in 2000
with the tool FAST and recently with the tool
QCOVER by aiming to make the first prototype
for solving reachability for Petri nets.



Reachability algorithm

Reachability algorithm (S : Petri net ; x,y : configurations)

BEGIN

IF y is not reachable from x in the associated continuous Petri net OR in the integer Petri net
(without guards)

THEN
STOP (write « y is not reachable from x »)
ELSE
IF y is not coverable from xin S
THEN
STOP (write « y is not reachable from x ») ;
ELSE
Use over-approximations for solving non-reachability : compute the coverability graph,...
Use exact accelerations for solving reachability : compute semilinear subsets of the reachability set
Use machine learning techniques (prospectives)

Use finally, a complex algorithm like the Leroux algorithm with Presburger invariants, the Mayr-
Kosaraju algorithm.

END



